
Kernel Approximation Methods for Speech Recognition

Avner May

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

c©2017

Avner May

All Rights Reserved

ABSTRACT

Kernel Approximation Methods for Speech Recognition

Avner May

Over the past five years or so, deep learning methods have dramatically improved the state of the

art performance in a variety of domains, including speech recognition, computer vision, and natural

language processing. Importantly, however, they suffer from a number of drawbacks:

1. Training these models is a non-convex optimization problem, and thus it is difficult to guar-

antee that a trained model minimizes the desired loss function.

2. These models are difficult to interpret. In particular, it is difficult to explain, for a given model,

why the computations it performs make accurate predictions.

In contrast, kernel methods are straightforward to interpret, and training them is a convex op-

timization problem. Unfortunately, solving these optimization problems exactly is typically pro-

hibitively expensive, though one can use approximation methods to circumvent this problem. In

this thesis, we explore to what extent kernel approximation methods can compete with deep learn-

ing, in the context of large-scale prediction tasks. Our contributions are as follows:

1. We perform the most extensive set of experiments to date using kernel approximation methods

in the context of large-scale speech recognition tasks, and compare performance with deep

neural networks.

2. We propose a feature selection algorithm which significantly improves the performance of

the kernel models, making their performance competitive with fully-connected feedforward

neural networks.

3. We perform an in-depth comparison between two leading kernel approximation strategies —

random Fourier features [Rahimi and Recht, 2007] and the Nyström method [Williams and

Seeger, 2001] — showing that although the Nyström method is better at approximating the

kernel, it performs worse than random Fourier features when used for learning.

We believe this work opens the door for future research to continue to push the boundary of

what is possible with kernel methods. This research direction will also shed light on the question of

when, if ever, deep models are needed for attaining strong performance.

Table of Contents

List of Figures iv

List of Tables vii

1 Introduction 1

2 Preliminaries 8

2.1 Notation . 8

2.2 Kernel methods . 9

2.2.1 Primal formulation . 10

2.2.2 Dual formulation . 12

2.3 Kernel approximation . 13

2.3.1 Random Fourier features (RFF) . 14

2.3.2 Nyström method . 16

2.4 Reproducing kernel Hilbert spaces (RKHS) . 19

2.4.1 Representer Theorem . 22

2.5 Neural networks . 25

2.5.1 Backpropagation . 26

2.5.2 Other architectures . 29

2.6 Automatic speech recognition (ASR) . 32

2.6.1 Acoustic model training . 34

2.6.2 Using neural networks for acoustic modeling 35

3 Related work 37

i

4 Random Fourier features for acoustic modeling 42

4.1 Methods . 43

4.1.1 Using kernel approximation methods for acoustic modeling 43

4.1.2 Linear bottlenecks . 43

4.1.3 Entropy regularized perplexity (ERP) . 44

4.2 Tasks, datasets, and evaluation metrics . 46

4.3 Details of acoustic model training . 48

4.4 Results . 50

4.5 Other Possible Improvements to DNNs and Kernels 53

4.6 Conclusion . 55

5 Compact kernel models via random feature selection 56

5.1 Random feature selection . 56

5.2 A sparse Gaussian kernel . 58

5.3 Results . 59

5.4 Analysis: Effects of random feature selection . 64

5.5 Conclusion . 66

6 Nyström method vs. random Fourier features 67

6.1 Review of Nyström method properties . 68

6.2 Experiments . 69

6.2.1 Task and dataset details . 69

6.2.2 Train details . 70

6.2.3 Results . 71

6.3 Nyström method error analysis . 79

6.4 Conclusion . 82

7 Conclusion 83

7.1 Future work . 84

Bibliography 86

ii

Appendices 103

A Definitions 104

B Derivation for random Fourier features 106

C Detailed results 108

C.1 Results from Section 4 . 108

C.2 Results from Section 5 . 111

D Nyström Appendix 114

D.1 Datasets . 114

D.2 Hyperparameter Choices . 115

D.3 Results . 115

D.4 Background for Proofs . 122

D.4.1 Definitions of a couple infinite dimensional Hilbert Spaces 122

D.4.2 Review of Reproducing Kernel Hilbert Space Definitions 122

D.5 Proofs: Nyström Background Section . 123

D.6 Proofs: Nyström Error Analysis . 125

D.6.1 Theorem 4 . 125

D.6.2 Theorem 5 . 128

D.6.3 Theorem 6 . 130

D.6.4 Theorem 7 . 130

D.7 Other ways of understanding the Nyström method 132

D.7.1 Nyström method as a projection onto a subspace 132

D.7.2 Nyström method as a solution to an optimization problem 132

D.7.3 Nyström method as a preconditioner . 133

D.7.4 Nyström method as eigenfunction approximator 134

iii

List of Figures

1.1 Impact of deep learning methods on state of the art performance in speech recogni-

tion and computer vision. 4

4.1 Kernel-acoustic model seen as a shallow neural network 44

4.2 Performance of kernel acoustic models on BN50 dataset, as a function of the number

of random features D used. Results are reported in terms of heldout cross-entropy

as well as development set TER. The color and shape of the markers indicate the

kernel used. 54

5.1 Performance of kernel acoustic models on BN50 dataset, as a function of the number

of random features D used. Results are reported in terms of heldout cross-entropy

as well as development set TER. Dashed lines signify that feature selection was

performed, while solid lines mean it was not. The color and shape of the markers

indicate the kernel used. 65

5.2 Fraction of the st features selected in iteration t that are in the final model (survival

rate) for Cantonese dataset. 66

5.3 The relative weight of each input feature in the random matrix Θ, for Cantonese

dataset, D = 50,000. 66

iv

6.1 Kernel approximation errors for the Nyström method vs. random Fourier features,

in terms of the total numbers of features (top) and the total memory requirement

(bottom) in the respective models. Error is measured as mean squared error on the

heldout set. For Nyström experiments with D ≤ 2500, and RFF experiments with

D ≤ 20000, we run the experiments 10 times, and report the median, with error

bars indicating the minimum and maximum. Note that due to small variance, error

bars are often not clearly visible. 73

6.2 Spectrum of kernel matrices generated from N = 20k random training points. . . . 73

6.3 Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the total numbers of features (left), total memory

requirement (middle), and kernel approximation error (right) of the corresponding

models. For Nyström experiments with D ≤ 2500, and RFF experiments with

D ≤ 20000, we run the experiments 10 times, and report the median performance,

with error bars indicating the minimum and maximum. Note that due to small vari-

ance, error bars are often not clearly visible. 74

6.4 Histograms of kernel approximation errors for Nyström features random Fourier

features. The different histograms correspond to a partition of the k(x, y)−z(x)T z(y)

values based on the values of k(x, y). Note that the Nyström method has many out-

liers for k(x, y) ≥ 0.25, some of which are truncated from the histogram. 76

6.5 Histograms of the feature vector norms for Nyström (left) and RFF (right), for var-

ious numbers of features. Note that for the RBF kernel, k(x, x) = 1 ∀x ∈ X , so a

feature vector z(x) of norm close to 1 approximates this self-similarity measure well. 76

6.6 Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the average kernel approximation errors, measured

as |k(x, y) − z(x)T z(y)|r for r ∈ {2.5, 3.5, 5.5}. Note that due to numeric under-

flow, some of the models with lowest approximation error sometimes do not appear

in the r = 5.5 plots. 79

D.1 Kernel approximation error, in terms of the number of features. 116

D.2 Kernel approximation error, in terms of the total memory requirement. 116

v

D.3 Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the total numbers of features (left), total memory

requirement (middle), and kernel approximation error (right) of the corresponding

models. Results reported on Adult, Cod-RNA, CovType, and Forest. 117

D.4 Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the total numbers of features (left), total memory

requirement (middle), and kernel approximation error (right) of the corresponding

models. Results reported on TIMIT, Census, CPU, and YearPred. 118

D.5 Spectrum of kernel matrices generated from N = 20k random training points. . . . 119

D.6 Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the average kernel approximation errors, measured

as |k(x, y) − z(x)T z(y)|r for r ∈ {2.5, 3.5, 5.5}. Note that due to numeric under-

flow, some of the models with lowest approximation error sometimes do not appear

in the plots. Results reported on Adult, Cod-RNA, CovType, and Forest. 120

D.7 Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the average kernel approximation errors, measured

as |k(x, y) − z(x)T z(y)|r for r ∈ {2.5, 3.5, 5.5}. Note that due to numeric under-

flow, some of the models with lowest approximation error sometimes do not appear

in the plots. Results reported on TIMIT, Census, CPU, and YearPred. 121

vi

List of Tables

2.1 A few example kernel functions. 12

2.2 Gaussian and Laplacian Kernels, together with their sampling distributions p(ω) . . 15

2.3 Cost of computing Nyström vs. random Fourier features (RFF), both in terms of

time and memory. For RFF, we also report the costs of the more efficient imple-

mentation using structured matrices [Le et al., 2013; Yu et al., 2015]. 19

2.4 Activation functions for neural networks. For the maxout and softmax activation

functions, the input x is a vector. For all others, it is a scalar. 26

4.1 Dataset details . 48

4.2 Effect of depth and width on DNN TER (development set): This table shows TER

results for DNNs with 1000, 2000, or 4000 hidden units per layer, and 3-6 layers,

on the Broadcast News development dataset. All of these models were trained using

a linear bottleneck for the output parameter matrix, and using entropy regularized

log loss for learning rate decay. The best result is in bold. 49

4.3 DNN TER Results (development set): ‘B’ specifies that a linear bottleneck is used,

‘R’ specifies that ERP is used (‘BR’ means both are used), and ‘NT’ signifies that

neither are used. 52

4.4 Kernel TER Results (development set): ‘B’ specifies that a linear bottleneck is used,

‘R’ specifies that ERP is used (‘BR’ means both are used), and ‘NT’ signifies that

neither are used. TIMIT models use 200k random features, and all others use 100k

features. 52

4.5 Table of Best DNN vs. Kernel results, across 4 datasets and 5 metrics. 53

vii

5.1 Kernel TER Results (development set):‘B’ specifies that a linear bottleneck is used,

‘R’ specifies that ERP is used (‘BR’ means both are used), and ‘NT’ signifies that

neither are used. ‘+FS’ specifies that feature selection was used for the experiments

in that row. TIMIT models use 200k random features, and all others use 100k features. 61

5.2 Kernel TER Results on Broadcast News development set for models with a very

large number of random feature (up to 400k). All models use a bottleneck of size

1000, and use ERP for learning rate decay. 62

5.3 Table comparing the Best DNN (‘D’) and kernel (‘K’) results, across 4 datasets and

6 metrics. The first 4 metrics are on the heldout set, the fifth is on the development

set, and the last metric is reported on the test set. For BN50, the large models from

Table 5.2 are included in the set of models from which the best performing model

is picked (for each metric). See Section 4.2 for metric definitions. 63

5.4 Table comparing the Best DNN and kernel results from this work to those from

[Huang et al., 2014] and [Chen et al., 2016], on the TIMIT test set. 63

6.1 Dataset details. For classification tasks, we write the number of classes in parenthe-

ses in the “task” column. 70

6.2 MSE, Bias, and Variance of kernel approximation errors k(x, y) − z(x)T z(y) for

Nyström (m = 1250), and RFF (m = 20000) features, estimated using many ran-

dom pairs of points in the TIMIT heldout set. We partition these pairs of points

(x, y) based on whether the true kernel value k(x, y) is greater than or less than 0.25. 77

C.1 DNN: Metric CE . 108

C.2 Kernel: Metric CE . 109

C.3 DNN: Metric ENT . 109

C.4 Kernel: Metric ENT . 109

C.5 DNN: Metric ERP . 110

C.6 Kernel: Metric ERP . 110

C.7 DNN: Metric ERR . 110

C.8 Kernel: Metric ERR . 111

C.9 Kernel: Metric CE . 112

viii

C.10 Kernel: Metric ENT . 112

C.11 Kernel: Metric ERP . 113

C.12 Kernel: Metric ERR . 113

D.1 Hyperparameters used for all datasets . 115

ix

Acknowledgments

First and foremost, I would like to thank my advisor Michael Collins for his years of guidance and

valuable feedback. In 2013, when I first met with Mike, I knew very little about machine learning

or speech recognition. He brought me from that day to this one. He did this in a number of ways:

1. He immediately gave me a concrete problem to work on. When I first spoke with Mike, he

told me about a multi-class classification problem important for speech recognition, and told

me to dive right in. This allowed me to get my feet wet right away, and begin to ask the

questions necessary to tackle this problem. Little did I know, I would spend the next four

years working on it.

2. He was hands-on when necessary. I remember sitting with Mike, working to debug my first

implementation of SGD for acoustic model training. It’s not often you hear about an advisor

stepping through code with a student.

3. He frequently provided guidance on promising directions to pursue. At so many points during

my PhD, Mike has listened to me go through a number of ideas, helping me think about

them in new ways, and choose amongst them. He draws from his wealth of knowledge and

experience to point me in the most interesting and promising directions. I still remember

when he first pointed me to the original random Fourier feature paper.

4. He always provided me with honest feedback. One of the things I most appreciate about Mike

is the very clear way in which he presents feedback. By holding my work to his very high

standards, and telling me exactly where it currently falls short, he pushes me well beyond

where I would be able to get on my own.

5. He gave me the freedom to explore ideas. Often during my PhD, I have spent time studying

topics not directly necessary to advance my research, but which I was excited about. Mike

x

has graciously allowed me to do this, gently pulling me back to shore when necessary.

Thank you, Mike, for all the time, energy, and guidance you have given me over the years. You have

been instrumental in my reaching this point, and our time together has set the intellectual foundation

upon which my future work will build.

I would also like to thank my many collaborators during my time at Columbia. Brian Kingsbury

was an invaluable resource. He was instrumental in getting me up and running with all the speech

recognition datasets, as well as with all the code necessary to decode the acoustic models I trained.

Daniel Hsu has been an important mentor, who helped considerably with the feature selection work

in particular. He is always extremely generous with his time, and his insights help me understand the

problems I am working on in new ways. Thanks to Fei Sha and his group at USC for our extended

collaboration on using random Fourier features for acoustic modeling. It was extremely helpful

to have another group with which to discuss ideas, and compare results. The work on Entropy

Regularized Perplexity came from their group, and was important for improving the performance

of our acoustic models.

During my PhD, I was fortunate to have the opportunity to intern at both Microsoft Research in

Redmond, WA, and Google Research in New York City. At Microsoft, I worked with the speech

recognition group, and was mentored by Jasha Droppo. At Google, I worked in Sanjiv Kumar’s

team, and was mentored by Jeffrey Pennington. Thanks to both groups for welcoming me and

teaching me so much.

Prior to beginning my work with Mike, I did research for two years under Professor Augustin

Chaintreau. I am deeply indebted to him for all the energy and time he gave me during those

two years, and for introducing me to what it really means to do research. I was always impressed

by his boundless energy, sharp intellect, and profound kindness and patience. During this time

we collaborated closely with Silvio Lattanzi and Nitish Korula at Google Research, two brilliant

researchers and kind people from whom I learned a lot.

A special thanks to my PhD committee—David Blei, Shih-Fu Chang, Michael Collins, Daniel

Hsu, and Brian Kingsbury—for all the time and energy they have put into reviewing my work, and

providing useful feedback and questions.

My time at Columbia would not have been the same without all the friends I made during my

time here. Thanks to Karl Stratos for being a close friend and intellectual partner throughout my

xi

entire PhD. He is actually the one who first recommended I speak with Mike regarding advising, and

for that I am forever indebted. Karl and I spent many hours talking about machine learning (through

our “chevruta”), as well as about many other topics (lifestyle, fitness, nutrition, politics, religion,

etc.), and I always appreciate hearing his perspective. I admire his love of learning, and endless

dedication to self-improvement. Victor Soto has been my officemate and friend for over four years,

and has brought much needed levity and companionship to my days. His laughter flows easily,

brightening days that would otherwise be quite solitary. Thanks also to Sasha Rush and Yin-Wen

Chang for their friendship and mentorship after I joined Mike’s research group, and for their patience

with all my questions. Thanks to all my other friends and colleagues at Columbia: Mohammad

Rasooli, Erica Cooper, Sarah Ita Levitan, Anna Prokofieva, Andrei Simion, Chris Kedzie, Noura

Farra, Tom Effland, Daniel Bauer, Chris Riederer, Arthi Ramachandran, Mathias Lécuyer, and many

others. This ride would have been a lot quieter, and nowhere near as fun, without you all.

I could not have made it to this point without the constant love and support of my entire family.

Thanks to both of my sisters, Yael and Orly, for always being there, whether with a helping hand,

an empathetic ear, or simply a hug. There are few things I enjoy more than going on runs with them

and catching up. Thanks to my brother-in-law Jona and soon-to-be brother-in-law Zev for their

friendship, great energy, and for making my sisters happy. And thank you to my niece, Aliza, and

my nephew, Benji, for bringing me so much joy every time I see them. And most of all, thank you

to my parents, Belly and Ernesto. It’s taken me 30 years to get to this point, and they have been by

my side, and rooting for me, every step of the way. They have taught me by example the importance

of putting my full energy behind all of my pursuits, and of always enjoying the ride. There is no

way I could ever thank them enough. This work is dedicated to them.

xii

Dedicated to my parents.

xiii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

A basic computational problem is to compute an output y ∈ Y based on an input x ∈ X . For

example, x could correspond to a vector of real numbers, and y could correspond to the maximum

element in that list. Programming languages provide a medium for precisely expressing the way

in which y should be computed, given x. However, in many cases, it is very difficult to know, a

priori, how to compute y, given x. For example, given a picture, represented by its pixels, how can

we compute what is in the picture? Or given an audio recording, how can we predict what words

were pronounced? In order to address these challenging scenarios, the field of supervised machine

learning takes the following approach: gather as many examples (xi, yi) as possible, define a family

of functions F from X to Y , and find the function f∗ ∈ F minimizing some notion of error on the

examples you gathered. For example:

f∗ = arg min
f∈F

N∑

i=1

L(f(xi), yi).

Here, L : Y × Y → R is a function assigning penalty L(y′, y) for predicting the label y′ instead of

the true label y. Note that if Y is a discrete set, this is called classification, whereas if Y ⊆ R, this

is called regression. The goal of this learning process is to find a function f∗ : X → Y which gen-

eralizes well to unseen data; in particular, we would like the expected penalty EX,Y [L(f∗(X), Y)]

on a random (X,Y) pair to be low.

For a variety of problems, a linear mapping between x and y is sufficient. Note that in the

context of regression, linear models are defined as the functions of the form f(x) = wTx + b (for

some w ∈ Rd, b ∈ R), while for binary classification (Y ∈ {−1,+1}), linear models take the form

CHAPTER 1. INTRODUCTION 2

f(x) = sign(wTx + b), where sign(z) is equal to +1 for z ≥ 0, and −1 otherwise. Although

the class of linear models might seem overly simplistic, it is quite important. One observation

is that linear models can be made very powerful if the feature representation for x is sufficiently

expressive.1 However, for many problems, there are no obvious feature representations on top

of which a linear function would perform well. For these problems, we must turn to non-linear

methods.

A wide-variety of non-linear methods have been proposed over the years (e.g., decision trees,

nearest neighbor methods, etc.). In this thesis, we will focus on two important and powerful families

of models: kernel models, and deep neural networks (DNNs). A kernel model is one which makes

predictions on a point x by comparing it with the points in the training set. It does so using expres-

sions of the form
∑N

i=1 αik(xi, x), where the kernel function k : X ×X → R can be thought of as a

similarity measure between two points in X . For example, for regression and binary classification,

the families of functions considered are:

Freg = {f | f(x) =

N∑

i=1

αik(xi, x) + b, αi ∈ R},

Fclass = {f | f(x) = sign
(N∑

i=1

αik(xi, x) + b
)
, αi ∈ R}.

The functions in Freg and Fclass can be understood as functions in which all the training points

xi “vote” on what the label should be for a point x, and these votes are weighted by the similar-

ity between x and xi. The set of kernel functions k which are generally considered are those that

correspond to a dot-product between points in some Hilbert spaceH, which could be infinite dimen-

sional. Specifically, k(x, x′) = 〈φ(x), φ(x′)〉H, where φ : X → H maps a point x into the feature

space H. As a result, we can understand kernel methods as linear methods in H. In particular, for

1For example, consider learning a binary classifier over a training set of points (xi, yi) where yi = 1 if |xi| ≥ 1,

and yi = −1 otherwise. If we use x′i = [xi, x
2
i] ∈ R2 as the feature representation for the ith training point, a linear

model y = sign(wTx′ + b) = sign(w1x+w2x
2 + b) would be able to perfectly model this relationship, using w1 = 0,

w2 = 1, and b = −1.

CHAPTER 1. INTRODUCTION 3

f ∈ Freg:

f(x) =
N∑

i=1

αik(xi, x) + b

= 〈
N∑

i=1

αiφ(xi), φ(x)〉H + b

= 〈w, φ(x)〉H + b, for w =

N∑

i=1

αiφ(xi) ∈ H.

Deep neural networks, on the other hand, compute y through a combination of linear and non-

linear transformations of x. One common approach is to transform x sequentially, alternating be-

tween linear and non-linear transformations. This can be expressed formally by defining the follow-

ing class of neural network functions:

F = {f | f(x) = σR(WR · σR−1(...W2 · σ1(W1 · x+ b1) + b2...) + bR)},

where Wi ∈ Rdi×di−1 , bi ∈ Rdi , R ∈ N, and the σi : Rdi → Rdi functions are called activa-

tion functions, and typically perform an element-wise non-linear transformation of their input. For

example, the sigmoid activation function computes exp(x)
1+exp(x) , and the rectified linear unit (ReLU)

activation function computes max(0, x).

Classic results show that both kernel methods and DNNs are “universal approximators,” mean-

ing that they can approximate any real-valued continuous function with bounded support to an arbi-

trary degree of precision [Cybenko, 1989; Hornik et al., 1989; Micchelli et al., 2006]. Thus, some

important questions are: Which class of methods performs better on real-world tasks? Which is

more efficient, in terms of training time, test time, and in terms of memory requirements? Are there

learning algorithms for each of these model families which are guaranteed to return the optimal

f∗ ∈ F?

Training a kernel model corresponds to solving a convex optimization problem, and thus there

exist techniques which find the optimal f∗ ∈ F . Unfortunately, these methods typically do not scale

well to large datasets. In particular, with data sets of size N , the Θ(N2) size of the matrix K of

pairwise kernel values (Kij = k(xi, xj)) makes training prohibitively slow, while the typical Θ(N)

size of the resulting models [Steinwart, 2004] makes their deployment impractical. Thus, kernel

methods are typically not applied to very large-scale problems, with millions of training points.

CHAPTER 1. INTRODUCTION 4

'00 '04 '12 '17

5

10

20

30

W
or

d
E

rr
or

 R
at

e
(%

)
Switchboard Performance (2000-2017)

19.3

14.8
13.3

5.5

GMMs Deep
Learning

Machine
Human (MSFT)
Human (IBM)

ImageNet Winners (2010-2017)

28.2

25.8

16.4

11.7

6.7

3.6 3.0 2.3

Deep
Learning

'10 '11 '12 '13 '14 '15 '16 '17
0

5

10

15

20

25

30

35

Im
ag

eN
et

 T
op

-5
 E

rr
or

 R
at

e
(%

) Machine
Human

Figure 1.1: Impact of deep learning methods on state of the art performance in speech recognition

and computer vision.

In contrast, DNNs are able to scale gracefully to very large datasets. They are generally trained

using stochastic gradient methods, meaning that at each iteration of the algorithm, the parameters

are updated using an unbiased estimate of the full gradient, which is obtained by computing the

objective function on a random sample of training points. Unfortunately, the training objective

for DNNs is non-convex, and thus it is generally impossible to guarantee that the model returned

by the training algorithm is optimal. Nonetheless, in recent years, deep learning techniques have

significantly advanced state of the art performance in various domains, including automatic speech

recognition (ASR) [Seide et al., 2011a; Hinton et al., 2012; Mohamed et al., 2012; Saon et al., 2017;

Xiong et al., 2017], computer vision [Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He

et al., 2016], and natural language processing (NLP) [Mikolov et al., 2013; Sutskever et al., 2014;

Andor et al., 2016]. In Figure 1.1, we show the impact of deep learning methods on state of the art

performance in speech recognition and computer vision. As you can see, in the past 5 years or so,

deep learning methods have achieved impressive performance gains in both of these settings.2

The primary focus of this thesis is answering the following question:

Can kernel methods be scaled to compete with DNNs in

the large-scale settings in which DNNs currently dominate?

2Importantly, the Switchboard task is a relatively easy one; it consists of clear, unaccented speech between strangers,

and all but four of the speakers in the test set are present in the training data.

CHAPTER 1. INTRODUCTION 5

In particular, we will focus on the acoustic modeling problem in speech recognition, which is the

problem of modeling the pronunciation of the basic phonetic units of speech. Specifically, for a

given frame of audio (typically corresponding to 25 ms), we must model the probability that the

frame corresponds to a specific meaningful unit of speech. In the simplest setting, the set of units

considered are called phonemes, which are the smallest units of sound which distinguish one word

from another in a given language (for example, ‘/b/’ and ‘/p/’ correspond to different phonemes,

because they distinguish the words “bark” and “park” from one another).3 However, because the

pronunciation of a phoneme is very affected by the phonemes that come before and after it, it

is very beneficial to model phonemes in context. In order to address the very large number of

context-dependent phoneme states (Sc if there are S phonemes, and a context window of size c

is used), these states are clustered using decision trees [Hwang et al., 1993; Young et al., 1994].

These clustered states are called senones, and there are typically thousands of them, presenting a

scalability challenge for training acoustic models.

Deep learning techniques have significantly advanced the state of the art in acoustic modeling,

by modeling the probability p(y|x) that an acoustic frame x (represented as a vector in Rd of acous-

tic features) corresponds to a senone y. In this thesis, we will scale kernel methods to this problem

using approximation techniques, which help bypass the computational expense of solving the kernel

method exactly. Much recent effort has been devoted to the development of approximations to ker-

nel methods, primarily via the Nyström approximation [Williams and Seeger, 2001] and via random

feature expansion (e.g., [Rahimi and Recht, 2007; Kar and Karnick, 2012]). These methods yield

explicit feature representations on which linear learning methods can provide good approximations

to the original non-linear kernel method. Specifically, they provide ways of generating representa-

tions z(x) ∈ RD such that 〈z(x), z(y)〉 ≈ k(x, y). By reducing the time and memory requirements

to being linear in the size of the training set, these methods unlock the potential of applying kernel

methods to truly large-scale tasks. However, there have been very few published attempts applying

these methods to the challenging large-scale tasks on which deep learning techniques have truly

shined (see Related Work section for discussion).

3Note that we distinguish phonemes from letters by using the ’/’ notation; ‘b’ is a letter, while ‘/b/’ corresponds to the

sound one makes when pronouncing the letter ‘b.’ Note that some letters can be pronounced multiple ways, making this

an important distinction.

CHAPTER 1. INTRODUCTION 6

The primary contribution of this thesis is to demonstrate that kernel approximation methods can

effectively compete with fully-connected feedforward neural networks on the acoustic modeling

task. More specifically:

• We benchmark the performance of randomized kernel features relative to fully-connected

DNNs on the acoustic modeling problem. Specifically, we use random Fourier features

[Rahimi and Recht, 2007], and report results on four datasets.4

• We propose a novel feature selection method which can significantly improve the perfor-

mance of a kernel model trained on a fixed number of random Fourier features. We show

that using this technique, kernel methods effectively match the performance of feedforward

DNNs across the four datasets.

• We perform an in-depth analysis comparing the performance of random Fourier features with

the Nyström method for kernel approximation, in the large-scale setting. We compare these

representations in terms of their kernel approximation error, their memory requirements, and

their performance when used for learning.

This contribution is important for both practical and theoretical reasons. From a practical per-

spective, it suggests that randomized features can be competitive with deep learning methods on

large-scale tasks. From a theoretical perspective, it adds to our understanding of DNNs and non-

linear classification. There is a large open question of why DNNs work, which is being actively

investigated from various directions, including optimization [Dauphin et al., 2014; Choroman-

ska et al., 2015; Anandkumar and Ge, 2016; Agarwal et al., 2017; Xie et al., 2017; Pennington

and Bahri, 2017], representational power and efficiency [Cybenko, 1989; Hornik et al., 1989;

Bengio and Lecun, 2007; Bianchini and Scarselli, 2014; Montúfar et al., 2014; Ba and Caruana,

2014], and generalization performance [Bartlett, 1996; Neyshabur et al., 2015; Zhang et al., 2017;

Arpit et al., 2017]. The fact that a shallow architecture with random features can match DNNs on a

task this large and challenging gives an important new perspective.

This thesis is organized as follows: Chapter 2 provides background on kernel methods, kernel

approximation methods, deep neural networks, speech recognition, and acoustic modeling. We

4We use the IARPA Babel Program Cantonese (IARPA-babel101-v0.4c) and Bengali (IARPA-babel103b-v0.4b) lim-

ited language packs, a 50-hour subset of Broadcast News (BN-50) [Kingsbury, 2009], and TIMIT [Garofolo et al., 1993].

CHAPTER 1. INTRODUCTION 7

review related work in Chapter 3. In Chapter 4, we present our work benchmarking the performance

of random Fourier features relative to DNNs on four speech datasets. In Chapter 5 we present our

feature selection algorithm, along with extensive experimental results using this method. In Chapter

6 we present our work comparing the Nyström method with random Fourier features. Lastly, we

present our conclusions, and discuss directions for future work, in Chapter 7.

The work presented in Chapters 4 and 5 is a much extended version of the paper titled “Compact

Kernel Models for Acoustic Modeling via Random Feature Selection” [May et al., 2016]. These

chapters also extend joint work with Lu et al. titled “A Comparison Between Deep Neural Nets and

Kernel Acoustic Models for Speech Recognition” [Lu et al., 2016]. This extended work has been

posted publicly as a pre-print [May et al., 2017], which is the primary document from which these

chapters are adapted.

CHAPTER 2. PRELIMINARIES 8

Chapter 2

Preliminaries

In this chapter, we provide background on kernel methods, kernel approximation, deep neural net-

works, and speech recognition. We begin by discussing the notation which we will use throughout

this thesis. As further background, we include a number of important mathematical definitions in

Appendix A (metric spaces, Hilbert spaces, Cauchy sequences, positive definite functions/matrices,

etc.).

2.1 Notation

We will use the following notation throughout the thesis:

• R will denote the real numbers, C the complex numbers, and N the natural numbers.

• [n] will denote the set {1, 2, . . . , n}. If n is infinite, then [n] = N.

• k will denote thousands, and M will denote millions (e.g., 100k will denote 100 thousand,

and 2M will denote 2 million).

• We will use lower case letters to denote vectors (e.g., x), and we will use xi to indicate the

ith element of the vector x ∈ Rd. By default, vectors will be assumed to be column vectors.

• We will use capital letters to denote matrices (e.g., A), and use Aij to indicate the element in

the ith row and jth column of A.

• [x1, . . . , xn] will denote the d× n matrix with vector xi ∈ Rd as the ith column.

CHAPTER 2. PRELIMINARIES 9

• C = A ◦B will denote the Hadamard product between two matrices A and B, also known as

the element-wise product (Cij = AijBij).

• xT will denote the transpose of a vector x, and AT will denote the transpose of a matrix A.

• ‖A‖F will denote the Frobenius norm of a matrix A, and ‖A‖2 will denote its spectral norm.

• 0d will denote the d-dimensional zero vector, and 0 will denote the zero element in a vector

space X .

• 1N,N will denote the N ×N identity matrix.

• X will denote the space of inputs, and Y will denote the space of outputs (typically equal to

R or [c] for some c ∈ N).

• k : X ×X → R will denote a kernel function, and K ∈ RN×N will denote the kernel matrix

for a specific training set {x1, . . . , xN} ⊂ X , with Kij = k(xi, xj).

• H will denote the feature space associated with a kernel function k, or more formally, its

Reproducing Kernel Hilbert Space (see Section 2.4 for the definition).

• 〈x, x′〉H will denote the inner-product in a space H between x and x′. If H is not specified,

and x, x′ ∈ RD, we can assume the standard dot-product 〈x, x′〉 =
∑D

i=1 xix
′
i is used. In

this case, we will often write this dot product as xTx′. If x, x′ ∈ CD, we use the standard

complex dot-product: 〈x, x′〉 =
∑D

i=1 xix
′
i, where a denotes the complex conjugate of any

a ∈ C.

• ‖x‖H =
√
〈x, x〉H will denote the norm of a vector in a Hilbert spaceH. IfH is not specified,

and x ∈ RD, we can use ‖x‖1 =
∑

i |xi| to denote the `1 norm of x, and ‖x‖2 =
√∑

i x
2
i to

denote the `2 norm of x, also known as the Euclidean norm.

2.2 Kernel methods

Kernel methods, broadly speaking, are a set of machine learning methods which learn to make

predictions on unseen datapoints by considering their similarity to the points in the training set. In

general, we define the similarity between two points inX through a kernel function k : X×X → R.

CHAPTER 2. PRELIMINARIES 10

Kernel models make predictions on unseen points x by making use of expressions of the form

h(x) =
∑N

i=1 αik(xi, x) + b; for regression, h(x) is used directly as the prediction of the model

f(x), while for binary classification, f(x) = sign(h(x)). Thus, each training points xi can influence

the prediction of the model f on a point x, where this influence is weighted by the similarity between

xi and x. If the kernel function k(x, x′) corresponds to a dot-product 〈φ(x), φ(x′)〉H in some feature

spaceH, then we can additionally interpret kernel models as linear models in this space:

h(x) =
N∑

i=1

αik(xi, x) + b

=

〈
N∑

i=1

αiφ(xi), φ(x)

〉

H

+ b

= 〈w, φ(x)〉H + b, for w =

N∑

i=1

αiφ(xi).

Here, φ : X → H is a feature map which sends a point in X to its corresponding point in H.

Importantly, for all positive definite kernels k, such a map exists.1 Thus, kernel methods can be seen

as a set of machine learning techniques which either explicitly (with φ) or implicitly (with k) map

data from the input space X to some Hilbert space H, in which a linear model is learned. We will

now discuss the two primary ways of understanding kernel methods in more detail, corresponding

to whether this mapping to H is explicit or implicit. In this discussion, we will use d to denote the

dimension of X , D to denote the dimension of H (which could be infinite), and N to denote the

number of training points (xi, yi).

2.2.1 Primal formulation

In the first formulation (which we will call the “primal”), we consider an explicit mapping φ : X →

H. We then learn a linear model directly on these representations:

w∗ = arg min
w∈H,b∈R

N∑

i=1

L(〈w, φ(xi)〉H + b, yi) +R(w).

1In fact, there are many such maps, which are all equivalent (i.e., isometrically isomorphic), yet take very different

forms. One such map is the mapping from x to the function k(x, ·) in the Reproducing Kernel Hilbert Space for k (see

Section 2.4). Another is given by Mercer’s Theorem, which shows that such a map exists, where the dimension of the

space H is countably infinite [mer, 1909]. Yet another is given by Bochner’s Theorem, in the case of shift-invariant

kernels (see Section 2.3.1).

CHAPTER 2. PRELIMINARIES 11

Here, R(w) is a regularization term which encourages simple models (typically, by penalizing the

norm of w; for example, R(w) = λ
2‖w‖

2
H), in order to improve generalization performance of w∗.

Additionally, L : R × Y → R is a generic loss function, which penalizes the model based on

some function of 〈w, φ(xi)〉H + b and the true label yi. The set Y corresponds to R for regression,

and {−1,+1} for binary classification. For regression, the quadratic loss L(zi, yi) = 1
2(zi − yi)2

is typical, while for binary classification, the cross-entropy loss function L(zi, yi) = log
(
(1 +

exp(−yizi)
)

is common.

As an example, consider the following feature map φ : R2 → R5, applied to a point x =

[x1, x2] ∈ R2:

φ(x) = (x21, x
2
2,
√

2x1x2,
√

2x1,
√

2x2, 1). (2.1)

A linear model trained on top of this feature representation would in effect be finding the optimal

quadratic function for the given task. This demonstrates how learning a linear model over features

generated through a non-linear map φ : X → H corresponds to learning a non-linear model in the

original space X . This can imbue the model with a lot more power.

For a given map φ, we can define the corresponding kernel function k : X × X → R as

k(x, x′) = 〈φ(x), φ(x′)〉H. For example, in the case of the quadratic map φ shown in Equation 2.1,

the corresponding kernel function is

k(x, x′) = x21x
′2
1 + x22x

′2
2 + 2x1x2x

′
1x
′
2 + 2x1x

′
1 + 2x1x

′
1 + 1

= (xTx′ + 1)2
(2.2)

Importantly, defining k(x, x′) as a dot-product in some space H implies that k is a positive definite

function, meaning that for any c1, . . . , cN ∈ R, and any x1, . . . , xN ∈ X ,
∑N

i,j=1 cicjk(xi, xj) ≥ 0.

This is easy to see, because
∑N

i,j=1 cicjk(xi, xj) = 〈
∑N

i=1 ciφ(xi),
∑N

i=1 ciφ(xi)〉H ≥ 0.

It is important to note that the computational expense of performing one epoch of stochastic

gradient descent on the primal optimization problem discussed above is O(ND) (Recall, N is the

size of the training set, and D is the dimension ofH. Here we do not include the cost of computing

φ(x).). This is fast as long as neither N or D is too large. Unfortunately, for a wide variety of of

kernels, D is extremely large, or even infinite. In order to address this computational hurdle, we

can instead work with the dual formulation of the optimization problem; this is discussed in the

following section.

CHAPTER 2. PRELIMINARIES 12

2.2.2 Dual formulation

In the second formulation (which we will call the “dual”), instead of defining the kernel function k

in terms of an explicit map φ, we instead define the kernel function k : X × X → R directly. We

require that k be a positive definite function. Generally, we can think of k as a similarity function,

which will assign a high score to pairs of points that are similar (e.g., close in Rd), and a low score

to points that are different. For example, we list some common kernel functions in Table 2.1.

Gaussian kernel: k(x, x′) = exp

(
− ‖x−x

′‖22
2σ2

)

Laplacian kernel: k(x, x′) = exp
(
− λ‖x− x′‖1

)

Polynomial kernel (degree r): k(x, x′) = (xTx′ + 1)r

Table 2.1: A few example kernel functions.

As you can see, the kernel we defined in Equations 2.1 and 2.2 is an example of a degree 2 polyno-

mial kernel. Notice that for all of these kernels, the kernel function can be computed inO(d), where

d is the dimension of X .

We saw above how to perform optimization in the primal view of the problem. But how do we

learn models using the dual view? For a large set of primal optimization problems of the form

w∗ = arg min
w∈H,b∈R

N∑

i=1

L(〈w, φ(xi)〉H + b, yi) +R(w),

it is possible to reformulate the problem as an equivalent dual optimization problem, which only

requires knowledge of the kernel matrix K ∈ RN×N . For example, the SVM primal problem is:

min
w∈H,b∈R

C
N∑

i=1

max
(

0, 1− yi
(
〈w, φ(xi)〉H + b

))
+ ‖w‖2H.

The corresponding dual problem is:

max
αi≥0

N∑

i=1

αi −
1

2

N∑

i,j=1

αiαjyiykk(xi, xj)

subject to αi ∈ [0, C] ∀i, and
N∑

i=1

αiyi = 0.

After the optimal dual parameters α∗i are found by solving the above optimization problem, the

optimal bias term b∗ can be computed by taking any vector xj for which 0 < α∗j < C (these are

CHAPTER 2. PRELIMINARIES 13

called “support vectors”), and solving for b∗ in the equation 1 = yj(
∑N

i=1 α
∗
i yik(xi, xj) + b∗).

Then, the model corresponding to these parameters is f(x) = sign(
∑N

i=1 α
∗
i yik(xi, x) + b∗).

Importantly, the dual optimization problem interacts with the datapoints xi exclusively through

the kernel function k. Importantly, both the primal and the dual optimization problems for kernel

methods are convex. In the case where the kernel functions between two points can be computed

quickly (e.g., in O(d)), and the dimension D of the primal space H is much bigger than N , it is

more efficient to solve the dual (time at least quadratic in N) than to solve the primal (time at least

linear in ND). This is called the “kernel trick,” and it allows us to find the optimal linear classifier

in H, even if it is an infinite dimensional space. However, if N is very large, the dual formulation

will be too expensive to solve as well, as it requires performing an optimization over the full N ×N

kernel matrix; simply computing the kernel matrix takes time (N2d) (assuming kernel evaluations

take O(d)). As an example, for a dataset with a million training points, the kernel matrix consumes

four terabytes of memory if stored as single precision floats. This leads to the following question:

What can we do in the case where both N and D are extremely large? For example, what if D is

infinite, and N is in the millions? In this case, one can use kernel approximation methods, which

we now discuss.

2.3 Kernel approximation

In the section, we discuss two important ways of doing kernel approximation: random Fourier

features [Rahimi and Recht, 2007], and the Nyström method [Williams and Seeger, 2001]. These

methods share the following goal: to construct low-dimensional representations z(x) ∈ RD such

that z(x)T z(x′) ≈ k(x, x′). We can then simply train a linear model on top of these representations

in order to attain an approximate solution to the exact kernel optimization problem. Training would

thus require O(ND) time per epoch,2 which is much better than solving the dual problem when

D << N . In particular, for a fixed D this runtime only grows linearly in N , making this appealing

in the large-scale setting. We now provide overviews for how z(x) is constructed, using either

2This runtime assumes that z(x) can be computed in O(D) for every x, which is generally not the case. However,

even if computing z(x) is more expensive than this, you can incur this as a one-time cost at the beginning of training, and

store the representations z(x) to disk (or in memory). If we assume computing z(x) is O(Dd), which is common, and

these features are computed on the fly during training, then the total runtime for an epoch of training becomes O(NDd).

CHAPTER 2. PRELIMINARIES 14

random Fourier features, or the Nyström method.

2.3.1 Random Fourier features (RFF)

For the random Fourier features method [Rahimi and Recht, 2007], the theorem which allows for

the construction of the representation z(x) is called Bochner’s Theorem. This is a classical result in

harmonic analysis, and it allows us to approximate any positive-definite shift-invariant kernel k with

finite-dimensional features. A kernel k(x, x′) is shift-invariant if and only if k(x, x′) = k̂(x − x′)

for some function k̂ : Rd → R. We now present Bochner’s Theorem:

Theorem 1. (Bochner’s Theorem, adapted from [Rahimi and Recht, 2007]): A continuous shift-

invariant kernel k(x, x′) = k̂(x − x′) on Rd is positive-definite if and only if k̂ is the Fourier

transform of a non-negative measure µ(ω).

Thus, for any positive-definite shift-invariant kernel k̂(δ), we have that

k̂(δ) =

∫

Rd
µ(ω)e−jω

T δ dω, (2.3)

where

µ(ω) = (2π)−d
∫

Rd
k̂(δ)ejω

T δ dδ (2.4)

is the inverse Fourier transform3 of k̂(δ), and where j =
√
−1. By Bochner’s theorem, µ(ω) is

a non-negative measure. As a result, if we let Z =
∫
Rd µ(ω)dω, then p(ω) = 1

Zµ(ω) is a proper

probability distribution, and we get that

1

Z
k̂(δ) =

∫

Rd
p(ω)e−jω

T δ dω.

For simplicity, we will assume going forward that k̂ is properly-scaled, meaning that Z = 1.

Now, the above equation allows us to rewrite this integral as an expectation:

k̂(δ) = k̂(x− x′) =

∫

Rd
p(ω)ejω

T (x−x′) dω = Eω
[
ejω

T xe−jω
T x′
]
. (2.5)

This can be further simplified as

k̂(x− x′) = Eω,b
[√

2 cos(ωTx+ b) ·
√

2 cos(ωTx′ + b)
]
,

3There are various ways of defining the Fourier transform and its inverse. We use the convention specified in Equations

(2.3) and (2.4), which is consistent with [Rahimi and Recht, 2007].

CHAPTER 2. PRELIMINARIES 15

Kernel name k(x,x′) p(ω) Density name

Gaussian e−‖x−x
′‖22/2σ2

(2π(1/σ2))−d/2e
− ‖ω‖22

2(1/σ)2 Normal(0d, 1
σ21d,d)

Laplacian e−λ‖x−x
′‖1 ∏d

i=1
1

λπ(1+(ωi/λ)2)
Cauchy(0d, λ)

Table 2.2: Gaussian and Laplacian Kernels, together with their sampling distributions p(ω)

where ω is drawn from p(ω), and b is drawn uniformly from [0, 2π]. See Appendix B for details

on why this specific functional form is correct.4 In Table 2.2, we list two popular (properly-scaled)

positive-definite kernels with their respective inverse Fourier transforms p(ω).

This motivates a sampling-based approach for approximating the kernel function. Concretely,

we draw {ω1, ω2, . . . , ωD} independently from the distribution p(ω) , and {b1, b2, . . . bD} indepen-

dently from the uniform distribution on [0, 2π], and then use these parameters to approximate the

kernel, as follows:

k(x, y) ≈ 1

D

D∑

i=1

√
2 cos(ωTi x+ bi) ·

√
2 cos(ωTi y + bi)

= z(x)T z(x′),

where zi(x) =
√

2
D cos(ωTi x + bi) is the ith element of the D-dimensional random vector z(x).

This gives us the explicit (random) mapping z : Rd → RD proposed by the random Fourier features

method. It has the very nice property that for all indices i ∈ [D], Eω,b [zi(x)zi(x
′)] = 1

Dk(x, x′),

and thus that Eω,b
[
z(x)T z(x′)

]
= k(x, x′).

We can bound the probability that z(x)T z(x′) is more than ε away from k(x, x′) as follows.

First, define Xi =
√

2
D cos(ωTi x + bi)

√
2
D cos(ωTi x

′ + bi) to be a random variable corresponding

to random draws ωi, bi, and let X =
∑D

i=1Xi. Noticing that Xi ∈ [− 2
D ,

2
D], that Eω,b [X] =

k(x, x′), and that X = z(x)T z(x′) for the random representations z(x), z(x′), we can directly

apply Hoeffding’s inequality on X to prove the desired bound:

Pω,b
[
|z(x)T z(x′)− k(x, x′)| ≥ ε

]
≤ 2 exp

(−Dε2
8

)
. (2.6)

4Another important thing to notice is that the integral in Equation 2.5 immediately gives us an explicit mapping φ

from X = Rd to the space of complex square-integrable functions L2(Rd, p), where φ(x) is the function fx : Rd → C

defined as fx(ω) = eω
T x. Thus, 〈φ(x), φ(x′)〉L2 =

∫
Rd fx(ω)fx′(ω)p(ω)dω =

∫
Rd p(ω)ejω

T (x−x′)dω = k(x, x′),

as desired. See Section D.4.1 in Appendix D for more details on how this Hilbert space is defined.

CHAPTER 2. PRELIMINARIES 16

In the original work by Rahimi and Recht, the authors prove a much stronger result, bounding the

probability that z(x)T z(x) is within ε of k(x, x′) for all pairs x, x′ ∈ X simultaneously [2007].

Specifically, they show that if D = Ω̃(d
ε2

), then with high probability z(x)T z(x′) will be within ε

of k(x, x′) for all x, x′ in some compact subset M ∈ Rd of bounded diameter.5 See Claim 1 of

[Rahimi and Recht, 2007] for the more precise statement and proof of this result.

In their follow-up work, Rahimi and Recht prove a generalization bound for models learned

using these random features [2008]. They show that with high-probability, the excess risk6 assumed

from using this approximation, relative to using the “oracle” kernel model (the exact kernel model

with the lowest risk), is bounded byO(1√
N

+ 1√
D

) (see the main result of [Rahimi and Recht, 2008]

for more details). Given that the generalization error of a model trained using exact kernel methods

is known to be within O(1√
N

) of the oracle model [Bartlett et al., 2002], this implies that in the

worst case, D = Θ(N) random features may be required in order for the approximated model to

achieve generalization performance comparable to the exact kernel model. Empirically, however,

fewer than Θ(N) features are typically needed in order to attain strong performance, as we will see

in Chapters 4, 5, and 6, and as has been seen in existing work (e.g., [Yu et al., 2015]).

2.3.2 Nyström method

Like random Fourier features, the Nyström method constructs a feature representation z(x) ∈ RD

such that z(x)T z(x′) ≈ k(x, x′). However, the Nyström method takes an entirely different approach

in order to construct this feature map. Instead of finding a way to approximate k(x, x′) well for

any pair x, x′ ∈ X , the Nyström method approaches this problem from the perspective of low-

rank matrix decomposition. Specifically, the Nyström method attempts to approximate the full

kernel matrixK well (e.g., in terms of Frobenius or spectral norm), using a low-rank decomposition

K̂ = ZTZ, where the ith column of Z will correspond to z(xi). Note that one can find the optimal

such Z ∈ RD×N minimizing both ‖K − ZTZ‖F as well as ‖K − ZTZ‖2 by taking the singular

value decomposition (SVD) K = UΛUT of the kernel matrix K (with the singular values sorted

from largest to smallest along the diagonal of Λ); then, the optimal ZT = UDΛ
1/2
D , where ΛD

denotes the D × D diagonal matrix of the D largest singular values, and UD denotes the first D

5We are using the Ω̃ notation to hide logarithmic factors.

6The “risk” of a model is defined as its expected loss on unseen data.

CHAPTER 2. PRELIMINARIES 17

columns of U (which correspond to the singular vectors of the largest singular values). There are

two problems with this solution:

1. Computing the SVD of a N ×N matrix takes O(N3), and is thus impractical for very large

N , which is precisely the setting in which we are interested in using kernel approximation.

Given that we can generally solve the dual kernel optimization problems in O(N3), there is

no reason to prefer this method from an efficiency perspective.

2. From the above definition for z(x), it is not clear how one would compute z(x) for a point x

which isn’t in the training set.7 This however, has an easy solution; if we letAD = UDΛ
−1/2
D ,

we get:

KAD = KUDΛ
−1/2
D

= (UΛUT)UDΛ
−1/2
D

= UDΛDΛ
−1/2
D

= ZT .

Thus, if we let ZT = KAD, we can take z(x) = ATDkx = Λ
−1/2
D UTDkx, where kx =

[k(x, x1), . . . , k(x, xN)]T is the vector of kernel evaluations between x and all training points

xi. Notice that this function z(·) ∈ span(k(x1, ·), . . . , k(xN , ·)) ⊂ H, and thus a lin-

ear model trained on top of this representation automatically gives us a model of the form
∑N

i=1 αik(xi, ·), which we will see in Section 2.4.1 must be the form of the optimal kernel

model (by Representer Theorem). Note, however, that while this solves the problem of how

to compute z(x) ∈ RD for any point x ∈ X , it does not address the computational issue, that

computing AD still requires taking the SVD of the full kernel matrix K.

The Nyström method addresses the first problem raised above, by taking inspiration from the so-

lution to the second problem. The intuition behind the Nyström method is as follows: instead of

constructing the representation z(x) based on the SVD of the full kernel matrix K, consider in-

stead the SVD of Km,m, the kernel matrix corresponding to “landmark” points {x̂1, . . . , x̂m}; note

that normally, these landmark points are selected from the training set (e.g., uniformly at random),

7For a points xi in the training set, simply let z(xi) be the ith column of Z

CHAPTER 2. PRELIMINARIES 18

but this need not be the case (e.g., [Zhang et al., 2008]). Now, we can consider z(x) = ÂTDk̂x,

where Km,m = Û Λ̂ÛT is the SVD of the landmark point kernel matrix, ÂD = ÛDΛ̂
−1/2
D , and

k̂x = [k(x, x̂1), . . . , k(x, x̂m)]T . Taking Zm = [z(x̂1), . . . , z(x̂m)] as the D×m matrix with z(x̂i)

as the ith column, gives us the optimal rank D decomposition ZTmZm for Km,m, as discussed above

(ZTmZm = Km,m if m = D). However, we can take this z(x) ∈ RD to be our representation

for any point x ∈ X , and this gives us a low rank decomposition ZTZ to the full kernel matrix

K, where Z = [z(x1), . . . , z(xN)]. This z(x) is precisely the representation which the Nyström

method constructs for the purposes of kernel approximation. Just like with random Fourier features,

one can learn a linear model on top of these representations in order to approximately solve the

kernel optimization problem.

One important thing to note is the cost of the Nyström method, both in terms of time and

memory:

1. Time (SVD): Computing the SVD of the m×m kernel matrix takes O(m3). Note that when

D < m, the SVD can be done faster using randomized SVD algorithms [Halko et al., 2011],

which would take O(m2D) instead of O(m3).

2. Time (training): During training, we must compute the representation z(x) = ÂTDk̂x for

every training point x. Assuming computing k(x, x′) takes time O(d) for x, x′ ∈ Rd, this

takes time O(Nmd+NmD). This is because computing k̂xi ∀i takes time O(Nmd), while

computing the matrix multiplication ÂTDk̂xi takesO(NmD) (O(mD) cost for each xi). Note

that this is a lot more expensive than the cost of random Fourier features, which take time

O(NDd) ≤ O(NmD) to compute; importantly, for RFF this can be further reduced to

O(ND log(d)) using structured matrix multiplications [Le et al., 2013; Yu et al., 2015].

3. Memory: Storing the m landmark points requires storing md floats, while storing the ÂD

matrix requiresmD storage. This brings the total memory requirement toO(md+mD). Note

that this is substantially more expensive than the storage costs of random Fourier features,

which simply require O(Dd) ≤ O(md), and which can be further reduced to O(D) [Le et

al., 2013; Yu et al., 2015].

In Table 2.3, we summarize the computational costs of Nyström vs. random Fourier features, dis-

cussed above.

CHAPTER 2. PRELIMINARIES 19

Method Time Memory

Nyström O(m2D +Nmd+NmD) O(md+mD)

Random Fourier Features O(NDd) O(Dd)

Random Fourier Features (structured) O(ND log(d)) O(D)

Table 2.3: Cost of computing Nyström vs. random Fourier features (RFF), both in terms of time and

memory. For RFF, we also report the costs of the more efficient implementation using structured

matrices [Le et al., 2013; Yu et al., 2015].

There are a variety of ways of understanding the Nyström method, aside from the one explained

above. They include:

1. As a projection onto a subspace.

2. As a solution to an optimization problem.

3. As a preconditioning method.

4. As a way to approximate the eigenvalues and eigenfunctions of the linear operator of the

kernel function, using Monte Carlo approximation.

These are all explained in further detail in Appendix D.

2.4 Reproducing kernel Hilbert spaces (RKHS)

One way of understanding kernel methods is as optimization over a space of functions from X

to R. The space of functions which corresponds to a specific kernel is called its Reproducing

Kernel Hilbert Space (RKHS). Given a symmetric positive definite kernel k : X × X → R, its

corresponding RKHS is essentially defined as the set of all linear combinations of functions of the

form k(x, ·), for x ∈ X . Note that here I am using the notation k(x, ·) to correspond to the function

fx : X → R such that fx(x′) = k(x, x′).

There are several ways of formally defining an RKHS [Sejdinovic and Gretton, 2012]; in this

section, however, we will focus on the Moore-Aronsajn construction of the RKHS corresponding

to a positive definite kernel k [Aronszajn, 1950]. This construction has two main steps: first, we

CHAPTER 2. PRELIMINARIES 20

will define the “pre-RKHS” H0 as the set of all finite linear combinations of functions of the form

k(x, ·) for x ∈ X . Note that this is a subset of RX , the space of all functions from X to R. We will

then turn this into a complete spaceH by adding toH0 the set of all its limit points in RX . We now

go through both of these steps in detail.

We begin by defining the setH0, along with an inner product in this space:

H0 = {f(·) =
n∑

i=1

αik(xi, ·) | xi ∈ X , αi ∈ R, n ∈ N}.

We now define the inner product between f =
∑n

i=1 αik(xi, ·) and g =
∑m

j=1 βjk(x̃j , ·) inH0 as:

〈f, g〉H0
=

n∑

i=1

m∑

j=1

αiβjk(xi, x̃j).

Now, if we consider the function φ : X → H0, defined as φ(x) = k(x, ·), we can see by the above

definition that 〈φ(x), φ(x′)〉H0 = 〈k(x, ·), k(x′, ·)〉H0 = k(x, x′). Thus, we have constructed a map

φ to a space H0 in which k(x, x′) = 〈φ(x), φ(x′)〉H0 , allowing us to view optimization over an

RKHS as searching for a linear model in this space.8

Note that the above definition of the inner product in H0 implies that the (squared) norm of

a function k(x, ·) ∈ H0 is ‖k(x, ·)‖2H0
= 〈k(x, ·), k(x, ·)〉H0 = k(x, x). Furthermore, using this

definition we can show that the “reproducing property” holds in H0—namely, that for any f =
∑n

i=1 αik(xi, ·) ∈ H0, and any x ∈ X , 〈f, k(x, ·)〉 = f(x). This can be seen easily:

〈f, k(x, ·)〉 =

〈
n∑

i=1

αik(xi, ·), k(x, ·)

〉

H0

=

n∑

i=1

αik(xi, x)

= f(x).

If we are in the case where we have an explicit feature map φ : X → H′, we can view the

8Importantly,H0 is not a proper Hilbert space, though it can be extended to one, as we will discuss.

CHAPTER 2. PRELIMINARIES 21

corresponding pre-RKHSH0 as follows:

H0 = {f(·) =
n∑

i=1

αik(·, xi) | xi ∈ X , αi ∈ R, n ∈ N}

= {f(·) =
n∑

i=1

αi〈φ(·), φ(xi)〉H′ | xi ∈ X , αi ∈ R, n ∈ N}

= {f(·) =

〈
φ(·),

n∑

i=1

αiφ(xi)

〉

H′
| xi ∈ X , αi ∈ R, n ∈ N}

= {fa(·) = 〈φ(·), a〉H′ | a =

n∑

i=1

αiφ(xi), xi ∈ X , αi ∈ R, n ∈ N}.

Thus, each function in H0 can be associated with a unique element a ∈ H′. Furthermore, we

will now show that the dot-product between two elements in H0 corresponds to the dot-product

between the corresponding points in H′. For fa, fb ∈ H0, where fa =
∑n

i=1 αik(·, xi), fb =
∑m

j=1 βjk(·, x̃j), and the corresponding points a =
∑n

i=1 αiφ(xi) and b =
∑m

j=1 βjφ(x̃j), we

have:

〈fa, fb〉H0
=

n∑

i=1

m∑

j=1

αiβjk(xi, x̃j)

=
n∑

i=1

m∑

j=1

αiβj〈φ(xi), φ(x̃j)〉H′

=

〈
n∑

i=1

αiφ(xi),
m∑

j=1

βjφ(x̃j)

〉

H′

= 〈a, b〉H′

This shows that there is a very strong correspondence between the space H0 and the subspace

of the feature spaceH′ composed of all finite linear combinations of points φ(x) for x ∈ X . In fact,

these spaces are isometrically isomorphic, meaning that there exists a linear bijection ψ between

the spaces, and this map preserves inner products (〈f, g〉H0 = 〈ψ(f), ψ(g)〉H′). This map takes the

expected form, mapping fa ∈ H0 to a ∈ H′.

In order to turn this pre-RKHS H0 into a proper Hilbert space H ⊃ H0, we need to make it

complete; this means that all Cauchy sequences in H must converge to points in H. Specifically,

we must add toH0 the points f ∈ RX for which there exists a Cauchy sequence {f1, f2, . . .} ∈ H0

which converges pointwise to f . Given two such points, f and g, where f is the limit of the Cauchy-

CHAPTER 2. PRELIMINARIES 22

sequence {fn}, and g is the limit of {gn}, we define the dot product between f and g as the limit of

the dot products of the sequences: 〈f, g〉H = limn→∞〈fn, gn〉H0 .

For more of the formal mathematical details behind this construction, see [Berlinet and Thomas-

Agnan, 2003; Sejdinovic and Gretton, 2012].

2.4.1 Representer Theorem

One very important result regarding optimization over an RKHS is the Representer Theorem, which

we present now:

Theorem 2. (Representer Theorem, adapted from [Schölkopf et al., 2001]): Let k : X × X → R

be a symmetric positive definite kernel, and H its RKHS. Then, for any non-decreasing function

G : R → R, any loss function L : (X × Y × R)N → R ∪ {+∞}, and any N labeled points

(xi, yi) ∈ X × Y , the optimization problem

arg min
f∈H

G(‖f‖H) + L((x1, y1, f(x1)), . . . , (xN , yN , f(xN)))

has a solution of the form f∗ =
∑N

i=1 αik(xi, ·). Furthermore, ifG is a strictly increasing function,

then any solution has this form.

Proof. Let A = span(k(x1, ·), . . . , k(xN , ·)) ⊂ H, and let A⊥ be the orthogonal complement of

A in H. Thus, H = A ⊕ A⊥, and any f ∈ H can be uniquely decomposed as f = fA + fA⊥ , for

fA ∈ A and fA⊥ ∈ A⊥. It follows from the reproducing property, and the orthogonality between

all points fA⊥ ∈ A⊥ with points k(xi, ·) ∈ A, that for all x1, . . . , xN ,

f(xi) = 〈f, k(xi, ·)〉

= 〈fA, k(xi, ·)〉+ 〈fA⊥ , k(xi, ·)〉

= 〈fA, k(xi, ·)〉

= fA(xi).

Thus,L((x1, y1, f(x1)), . . . , (xN , yN , f(xN))) = L((x1, y1, fA(x1)), . . . , (xN , yN , fA(xN))).

Now, note that ‖f‖H =
√
‖fA‖2H + ‖fA⊥‖2H ≥ ‖fA‖H. Thus, it follows from G being non-

decreasing that G(‖f‖H) ≥ G(‖fA‖H). It now immediately follows that for any f = fA + fA⊥ ∈

H, with fA ∈ A, fA⊥ ∈ A⊥, we have G(‖f‖H) + L((x1, y1, f(x1)), . . . , (xN , yN , f(xN))) ≥

CHAPTER 2. PRELIMINARIES 23

G(‖fA‖H) +L((x1, y1, fA(x1)), . . . , (xN , yN , fA(xN))), and thus fA is at least as good as f with

respect to this objective function we are minimizing. Now, if f∗ = f∗A + f∗
A⊥
∈ H is a global min-

imizer of the objective function, it follows that f∗A =
∑N

i=1 αik(xi, ·) is also a global minimizer.

This proves the first part of the theorem.

For the second part, we assumeG is a strictly increasing function. In this case, all solutions f∗ =

f∗A + f∗
A⊥

must be of this form (f∗
A⊥

= 0), because if they weren’t, then we would have ‖f∗‖H >

‖f∗A‖, and thusG(‖f∗‖H) > G(‖f∗A‖). This would mean that f∗A would attain a strictly lower value

with respect to the objective than f∗, which contradicts f∗ being a global minimizer.

This is a very important result, which explains what we said in Section 2.2, regarding kernel

methods trained on points x1, . . . , xN ∈ X producing models of the form f(x) =
∑N

i=1 αik(xi, x).

The Representer Theorem tells us that even if we were allowed to search through the much larger

space of function H, this would not help us attain better performance on our training objective

function, because there will always be a solution in span({k(xi, x) | i ∈ [m]}) that is at least as

good.

Another important consequence of the Representer Theorem is that if we consider the problem

of learning a linear model on top of an explicit feature mapping φ(x), the optimal model w∗ will

be of the form w∗ =
∑N

i=1 αiφ(xi). In particular, this means that if define φ̂(x) = [φ(x), 1] by

appending a 1 to the end of the φ(x) vector, we know the optimal model ŵ∗ = [w∗, b∗] trained on

top of these φ̂(x) vectors will have the form w∗ =
∑N

i=1 αiφ(xi) and b∗ =
∑N

i=1 αi. Viewing this

from the kernel perspective, appending a 1 to φ(x) corresponds to adding 1 to the value of all kernel

evaluations: k̂(x, x′) = 〈φ̂(x), φ̂(x′)〉 = k(x, x′) + 1. Thus, the Representer Theorem tells us that

the optimal model in the RKHS corresponding to the kernel k̂ will take the form

f∗(x) =

N∑

i=1

αik̂(x, xi)

=
N∑

i=1

αik(x, xi) +
N∑

i=1

αi.

As you can see, the optimal bias term b∗ will always be equal to
∑N

i=1 αi, which implies that we

can find the optimal model of the form
∑N

i=1 αik(x, xi) + b by simply considering the modified

kernel k̂, and searching for the optimal model of the form
∑N

i=1 αik̂(x, xi). One important caveat

to this is that we are assuming that we are including the bias term in the norm ‖f‖H of the model in

CHAPTER 2. PRELIMINARIES 24

the RKHS. Viewing this from the primal perspective, this corresponds to regularizing the bias term

b in the model [w, b], something which is often not done. This raises the question of whether there

exists an extension of the representer theorem which applies to models for which the bias term is

not regularized. This is addressed by the “Semiparametric Representer Theorem” [Schölkopf et al.,

2001].

Theorem 3. (Semiparametric Representer Theorem, adapted from [Schölkopf et al., 2001]): Let

k : X ×X → R be a symmetric positive definite kernel,H its RKHS, G : R→ R a non-decreasing

function, L : (X × Y × R)N → R ∪ {+∞} an arbitrary loss function, and (xi, yi) ∈ X × Y a

set of N labeled points. Further, suppose we are given a set of M real-valued functions {ψp}Mp=1

on X , with the property that the N ×M matrix Ψ with Ψip = ψp(xi) has rank M . Then, letting

V = span({ψp}Mp=1), the optimization problem

arg min
f̃=f+g,
f∈H, g∈V

G(‖f‖H) + L((x1, y1, f̃(x1)), . . . , (xN , yN , f̃(xN)))

has a solution of the form f̃∗ =
∑N

i=1 αik(xi, ·) +
∑M

p=1 βpψp(·). Furthermore, if G is a strictly

increasing function, then any solution has this form.

Proof. The proof of this theorem is very similar to the one for the Representer Theorem. Let

f̃ = fA + fA⊥ + g and f̃A = fA + g, where A = span(k(x1, ·), . . . , k(xN , ·)) ⊂ H, fA ∈

A, fA⊥ ∈ A⊥, and g ∈ V . Letting f = fA + fA⊥ , by the orthogonality of fA⊥ with A we

have that f(xi) = fA(xi) for any xi in the labeled sample (same as Representer Theorem proof).

Thus, f̃(xi) = f̃A(xi), and G(‖f‖H) + L((x1, y1, f̃(x1)), . . . , (xN , yN , f̃(xN))) ≥ G(‖fA‖H) +

L((x1, y1, f̃A(x1)), . . . , (xN , yN , f̃A(xN))). Thus, if f̃ is a minimizer for the above optimization

problem, so is f̃A, proving the first part of the theorem. The second part follows easily (as it does in

the Representer Theorem proof).

Now, if we consider the case where we have a single function ψ(x) = 1 ∀x ∈ X , then solving

an optimization problem like the one above corresponds to searching through all functions of the

form f̃ = f+b, where f is in the RKHSH, b ∈ R, and the bias term b is not regularized. Leveraging

the above theorem, it follows that the minimizer of this optimization problem will be of the form

f̃∗ =
∑N

i=1 αik(xi, ·) + b. Thus, we have shown how to extend the representer theorem to the more

general case where an unregularized bias term is allowed.

CHAPTER 2. PRELIMINARIES 25

2.5 Neural networks

Neural networks are a very flexible family of non-linear models, which are generally trained using

gradient methods, and which have recently achieved remarkable performance on numerous empir-

ical tasks. There are various different neural network architectures, designed for different types of

tasks. However, all these architectures share some key properties:

1. They transform their input using a composition of linear and non-linear functions.

2. They are typically trained using gradient descent methods. The most common training algo-

rithm is called backpropagation, which is an algorithm for efficiently computing the gradient

of the loss function with respect to all the parameters in the network (see Section 2.5.1).

3. The optimization problem of finding the parameters which minimize the training objective is

non-convex. As a result, lots of tricks are employed during training in order to improve the

chances of the training algorithm finding a good model.

An important class of neural networks are called fully-connected feedforward neural networks.

These networks make predictions on an input x as follows:

f(x) = σR(WR · σR−1(...W2 · σ1(W1 · x+ b1) + b2...) + bR), (2.7)

where Wi ∈ Rdi×di−1 , bi ∈ Rdi , R ∈ N, and the σi : Rdi → Rdi functions are called activation

functions. These activation functions typically transform their input in an element-wise fashion,

which is generally non-linear. In Table 2.4, we show a list of common activation functions. Note that

all these functions operate on scalars, except for softmax and maxout, which take vectors as input.

The softmax function is commonly used at the final layer, to convert the output into a probability

distribution. This is particularly important for classification problems, where it is often desirable for

a model to produce a probability distribution over the set of classes. In the classification context,

using the softmax function to convert the output of the network into a probability distribution also

allows the network to be trained using the cross-entropy (CE) loss function. On a single example

x, with true label y, the cross-entropy loss penalizes a model f which assigned probability fy(x) to

the correct label as follows:

LCE(f(x), y) = − log(fy(x)).

CHAPTER 2. PRELIMINARIES 26

Activation Function Name Equation

Identity σ(x) = x

Sign function σ(x) = sign(x)

Sigmoid σ(x) = (1 + exp(−x))−1

Tanh σ(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

ReLU (Rectified Linear Unit) σ(x) = max(0, x)

Softplus σ(x) = ln(1 + exp(x))

Maxout σ(x) = maxi xi

Softmax σi(x) = exp(xi)∑
j exp(xj)

Table 2.4: Activation functions for neural networks. For the maxout and softmax activation func-

tions, the input x is a vector. For all others, it is a scalar.

Importantly, minimizing the cross-entropy objective on a training set corresponds to maximizing the

probability of the dataset under the probability model f being trained (arg minf
∑N

i=1− log(fyi(xi)) =

arg maxf
∏n
i=1 fyi(xi)).

As we will see in Section 2.6, for speech recognition systems it is generally important for the

model to output a probability distribution, given that the task of the speech recognition system is to

output the sequence of words most likely to have produced a given sequence of acoustic features.9

2.5.1 Backpropagation

Neural networks are typically trained using the backpropagation algorithm (short for “backward

propagation of errors”), which is simply an efficient way of calculating the gradient of a network’s

objective function with respect to its parameters. We now review how this algorithm works, partially

following the explanation of Guenter et al.[2013] when discussing the gradients corresponding to

matrix multiplication.

Suppose we have a feedforward DNN as in Equation 2.7, which outputs hR = σR(WR ·

σR−1(...W
2 · σ1(W 1 · x + b1) + b2...) + bR), given the input x ∈ Rd1 .10 Suppose further that

9Generally, a Hidden Markov Model (HMM) is used as the probability model; see Section 2.6 for more details.

10We use superscripts here for the W , h, and b matrices/vectors in order to allow for subscripts to index individual

CHAPTER 2. PRELIMINARIES 27

we have some loss function L(hR) on the output of this network which we are trying to minimize

using gradient descent. Now, assume we know the gradient of this objective function with respect

to the output hr = σr(W
rhr−1 +br) of its rth layer. We will now show that this is all that is needed

in order to compute the gradients with respect to W r, hr−1, and br. Importantly, this allows for the

algorithm to proceed recursively, because knowing the gradient with respect to hr−1 then allows

the equivalent computations at the layers below. Note that to be precise, I will be considering the

gradients of the following functions:

Lr1(h
r) = L(σR(WR · σR−1(...σr+1(W

r+1 · hr + br+1) . . .) + bR)

Lr2(c
r) = Lr1(σr(c

r))

Lr3(W
r, br) = Lr2(W

rhr−1 + br)

cr = W rhr−1 + br

hr = σr(c
r)

h0 = x

LR1 (hR) = L(hR).

In order to derive the updates used for backpropagation, we will use the multivariate version of

the chain rule, for functions s : Rm → R, g : Rm → Rn, and f : Rn → R, where s(t) = f(g(t)) =

f(g1(t1, . . . , tm), . . . , gn(t1, . . . , tm)), we have the following form for the partial derivatives of s:

∂s

∂ti
=

n∑

j=1

∂f

∂gj

∂gj
∂ti

. (2.8)

For the calculations that follow, let’s assume that hr ∈ Rdr , that W r ∈ Rdr×dr−1 is the param-

eter matrix at this layer, that br ∈ Rdr is the bias parameter at this layer, and that hr−1 ∈ Rdr−1

is the output of the previous layer. We assume we know dhr =
∂Lr1
∂hr , which is the vector of partial

derivatives of Lr1 with respect to every element in hr (dhri =
∂Lr1
∂hri

). Now, how do we compute

dW r =
∂Lr3
∂W r , dbr =

∂Lr3
∂br , and dhr−1 =

∂Lr−1
1

∂hr−1 , given dhr? First, let cr = W rhr−1 + br, so

that hr = σr(c
r). We can see by a straightforward application of the one-dimensional chain rule

that dcri =
∂Lr2
∂cri

=
∂Lr1
∂hri

∂hri
∂cri

= dhriσ
′
r(c

r
i), where σ′r is the derivative of the activation function σr.

elements of these matrices/vectors in the calculations below. We apologize for this notation change, relative to Eq. 2.7.

CHAPTER 2. PRELIMINARIES 28

Thus, dcr = dhr ◦ σ′r(cr), where ◦ denotes the element-wise vector product. Now, we compute

dW r =
∂Lr3
∂W r and dbr =

∂Lr3
∂br using the multivariate chain rule:

∂Lr3
∂W r

kl

=

dr∑

i=1

∂Lr2
∂cri

∂cri
∂W r

kl

(2.9)

∂Lr3
∂brk

=

dr∑

i=1

∂Lr2
∂cri

∂cri
∂brk

(2.10)

By the definition of matrix multiplication (cr = W rhr−1 + br), we can see that

cri =

dr−1∑

j=1

W r
ijh

r−1
j + bri ,

and thus that

∂cri
∂W r

kl

=




hr−1l if k = i

0 else.

∂cri
∂brk

=





1 if k = i

0 else.

Equations 2.9 and 2.10 can now be simplified:

∂Lr3
∂W r

kl

=
∂Lr2
∂crk
· hr−1l

⇒ dW r = dcr · (hr−1)T

∂Lr3
∂brk

=
∂Lr2
∂crk

⇒ dbr = dcr

With the same approach, we can show that dhr−1 = (W r)T · dcr. We have now shown that given

dhr, we can calculate dW r, dbr, and dhr−1 as follows:

dW r = dcr · (hr−1)T

dhr−1 = (W r)T · dcr

dbr = dcr,

where dcr = dhr ◦ σ′(W rhr−1).

CHAPTER 2. PRELIMINARIES 29

These recursive equations constitute the core of the backpropagation algorithm, which allows the

gradient with respect to all the parameters in the network to be computed efficiently, starting from

the output from the network, and moving toward the input of the network. The “base case” for this

recursion is when r is equal to the depth R of the network. In this case, it is clear that one can easily

compute the gradient dhR of LR1 with respect to the output hR = σR(WRhR−1), because LR1 is a

direct function of hR. For example, in the case where L corresponds to the least squares loss, and

h∗ is the vector of targets for the regression, then LR1 (hR) = 1
2‖h

R − h∗‖22, and dhR = hR − h∗.

Often, we call the “forward pass” of a network the process of computing the output from the

input, and we call the “backward pass” the process of computing the gradients of the network. No-

tice that the forward pass for each layer requires one matrix multiplication cr = W rhr−1 involving

roughly drdr−1 multiply-adds, while the backward pass requires two such matrix multiplications,

and is thus twice as expensive computationally.

2.5.2 Other architectures

Two important types of neural network architectures, aside from fully-connected feedforward net-

works, are convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We will

now discuss these one at a time.

2.5.2.1 Convolutional Neural Networks (CNNs)

Although they can be used in a variety of domains (including speech recognition and natural lan-

guage processing), CNNs are best known for their success on computer vision tasks [Krizhevsky

et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016]. In 2012, Krizhevsky et al. won the

ImageNet Large Scale Visual Recognition Challenge [Russakovsky et al., 2015] by an impressive

10% margin in Top-5 error rate. CNNs are in a sense quite similar to fully-connected networks,

but they perform a very particular kind of linear transformation known as convolution. Convolution

corresponds to performing a sequence of dot products between a dp × dq “kernel” with the various

dp × dq patches which make up an image.11 Each kernel can be seen as a pattern detector, which

11This use of the word “kernel” is not to be confused with the kernels discussed elsewhere in this paper (e.g., Section

2.2). Additionally, when we say the “dot product” between two dp × dq matrices, we mean the regular dot product

between the “flattened” versions of these matrices (i.e., turn the matrices into vectors by concatenating all their columns,

CHAPTER 2. PRELIMINARIES 30

scans the full image to see if instances of a given pattern are found (a large dot product between

a dp × dq kernel and an image patch indicates the presence of the pattern). With one-dimensional

input, we can visualize convolution of a vector x ∈ R8 with a kernel k = [w1, w2, w3] ∈ R3 as

follows:

h =




w1 w2 w3 0 0 0 0 0

0 w1 w2 w3 0 0 0 0

0 0 w1 w2 w3 0 0 0

0 0 0 w1 w2 w3 0 0

0 0 0 0 w1 w2 w3 0

0 0 0 0 0 w1 w2 w3




· x.

Thus, convolution is equivalent to matrix multiplication with a sparse matrix, which uses the

same parameters (in this case, {w1, w2, w3}) across the various rows of the matrix. This is called

“parameter sharing”, and is very important for both memory efficiency (can store the entire 6×8 ma-

trix above with only 3 parameters), as well as generalization performance (by reducing the number

of parameters, the complexity of the model is decreased, and more data is used to train each pa-

rameter). Furthermore, convolution can be performed very quickly on GPUs, using the Fast Fourier

Transform [Vasilache et al., 2015], thus also making training faster. This type of structured matrix

multiplication used for convolution is particularly well suited for image recognition problems, as it

creates models which exhibit some translation invariance by design.

There are several other important differences between CNNs and fully-connected networks.

For example, CNNs typically have several convolutional layers, followed by some fully-connected

layers. In addition, after applying the element-wise non-linearity on top of a convolution operation,

an operation called “max-pooling” is often performed [Krizhevsky et al., 2012]; this corresponds

to applying a maxout non-linearity, which summarizes a small neighborhood of outputs from the

convolutional layer by simply outputting the maximum value in the neighborhood. We refer the

reader to [Goodfellow et al., 2016] for a more complete discussion of CNNs.

and then take the dot product between these vectors.)

CHAPTER 2. PRELIMINARIES 31

2.5.2.2 Recurrent Neural Networks (RNNs)

RNNs are designed for the processing of sequences of inputs and outputs, which in general can vary

in length. Here, we will define a sequence to be an ordered list of elements from a set (e.g., X), and

we will denote it by (x1, . . . , xT) ≡ (xt)
T
t=1, where each xt ∈ X . A sequence can be though of

as a signal with a temporal component. The most straightforward RNN processes the input in the

following recursive manner:

ht = σ(Wxt + Uht−1)

ŷt = σ̂(V ht),

where we define h0 = 0, and the above equations are for t > 0. The objective function of the

network is a differentiable function, which penalizes the output sequence (ŷt)
T
t=1 with respect to

the true output (yt)
T
t=1. For example, if σ̂ is the softmax function, then the loss Lt at time t could

be the cross-entropy objective
∑C

i=1−yti log(ŷti); here, we use ŷti to denote the probability under

the model that the label at time t is i ∈ [C], and we let yti be 1 if the true label at time t is i,

and 0 otherwise. Then, the total loss L for the network on a given input could be
∑T

t=1 Lt. As

usual, the parameters of the network (U, V,W) are trained using gradient methods. RNNs have the

potential to leverage information from much earlier in a sequence in order to decide what to output

at a given time step. This ability to capture long-range dependencies in the input is very important

in certain application areas, like natural language processing (NLP). However, training RNNs can

suffer from a variety of problems, including vanishing and exploding gradients. Long Short-Term

Memory networks (LSTMs) are an effective modification to the RNN architecture described above,

designed to deal with this problem [Hochreiter and Schmidhuber, 1997]. LSTMs give state of the art

performance on a variety of tasks, including parsing in NLP [Kiperwasser and Goldberg, 2016], as

well as acoustic modeling and language modeling in speech recognition systems [Saon et al., 2017;

Xiong et al., 2017]. We refer the reader to [Goodfellow et al., 2016] for a more complete discussion

of RNNs.

CHAPTER 2. PRELIMINARIES 32

2.6 Automatic speech recognition (ASR)

The goal of automatic speech recognition (ASR) systems is to accurately transcribe human speech.

The input to an ASR system is an audio recording of a human speaking, which is typically called

an “utterance.” An utterance is typically represented as a sequence of “frames”, where each frame

is represented as a vector of acoustic features. A frame corresponds to a short segment of speech

(e.g., 25 ms), and typically there is overlap between neighboring frames (for example, a 10 ms shift

between frames). More formally, we will consider utterances represented as X = (x1, . . . , xT),

where xi ∈ Rd corresponds to the acoustic features of the ith frame. The goal is to output the

sequence of words w∗ = (w1, . . . , wL) most likely to have generated the utterance X , under a

probability model p:

w∗ = arg max
w

p(w|X)

= arg max
w

p(X|w)p(w)

p(X)

= arg max
w

p(X|w)p(w)

= arg max
w

log(p(X|w)) + log(p(w)) (2.11)

p(X|W) is called the acoustic model, and p(w) is the language model. The job of the acoustic

model is to assign a score (log(p(X|w))) describing how well the acoustics match a given word se-

quence w, while the job of the language model is to give a score (log(p(w))) quantifying how likely

a sequence of words w is in a given language, independent of the acoustics. Acoustic models are

trained on large amounts of transcribed audio, while language models are trained on large amounts

of text. The ASR system returns the sequence of words w∗ maximizing the sum of scores from

these two different models, as expressed in Equation 2.11. The process of searching for the optimal

word sequence w∗ is called decoding.

As an example, consider an utterance in which a speaker says “the dog barked.” Perhaps, when

the speaker pronounced this utterance, they said it in such a way that “barked” sounded more liked

“parked”. What should the ASR system output? Given that the speaker pronounced “barked” more

like “parked”, let’s assume the acoustic model assigned a higher score to P (X | “the dog parked”)

than to P (X | “the dog barked”). However, given that dogs bark much more often than they drive,

the language model would likely assign a much higher score to “the dog barked” than “the dog

CHAPTER 2. PRELIMINARIES 33

parked”. Thus, the sum of the acoustic and language models scores would likely be higher for “the

dog barked”, and the system would output this word sequence as its prediction.

In practice, given that these two models are trained separately and with different criteria, their

relative scales might not be well suited for the ASR task. Thus, a scalar α is chosen to maximize the

empirical performance of the ASR system which outputs arg maxw log(p(X|w)) + α log(p(w)).

Note that this corresponds to replacing the language model p(w) with p(w)α/Z, where Z simply

normalizes p(w)α to sum to 1. Thus, it is still a proper probability model. Intuitively, this hyperpa-

rameter also allows an ASR system to place more relative weight on whichever of the two models

is stronger.

ASR systems are generally evaluated using a metric known as “word error rate” (WER). This

metric is calculated as follows:

1. The test utterances are processed by the ASR system, which makes a prediction for every

utterance.

2. For each test utterance, the ASR output is aligned with the reference transcription, using a

dynamic programming string alignment algorithm.

3. Given these alignments, the total number of substitutions (S), insertions (I), and deletions (D)

are counted across all utterances, and the WER is calculated as:

WER =
S +D + I

N
,

where N is the total number of words in the reference transcriptions.

For languages whose primary units are not words (e.g., character-based languages like Cantonese),

we can define the appropriate metric analogous to word error rate. For example, for Cantonese, the

“character error rate” (CER) is used. In this thesis, we will use the more general term “token error

rate” (TER) to refer to any of these metrics.

Given that an important part of this thesis is the training of acoustic models, we will now discuss

how acoustic models are trained in more detail.

CHAPTER 2. PRELIMINARIES 34

2.6.1 Acoustic model training

The most common type of acoustic model uses a hidden Markov model (HMM) in order to model

words and sentences. At a high level, words and sentences are modeled as HMMs over a finite set

of states {q1, . . . , qS}. In the simplest case, the states represent phonemes, which are the small-

est units of sound which distinguish one word from another in a given language. There are two

important sets of parameters associated with HMMs: The first are the transition probabilities aij ,

representing the probability of transitioning from state qi to qj , given that the current state is qi.

The second are the emission probabilities bi : Rd → R, where bi(x) = p(x|qi) is the probability

of observing an acoustic vector x, given that the current state is qi. For many years, the dom-

inant model for the emission probabilities was a Gaussian mixture model (GMM); in this case,

p(x|qi) =
∑M

i=1 cif(x;µi,Σi), where f(x;µi,Σi) is the probability density function (pdf) of a

multivariate normal distribution with mean µi and covariance matrix Σi, and the ci ∈ R are the

mixture weights (ci ≥ 0,
∑M

i=1 ci = 1). Historically, all of these parameters (aij , ci, µi, Σi) were

trained using the Expectation-Maximization (EM) algorithm [Dempster et al., 1977]. Nowadays,

the more common approach is to use neural networks for acoustic modeling, which we discuss in

Section 2.6.2.

Above, we mentioned that each state qi could represent a phoneme. However, it is possible to at-

tain much stronger performance by having more fine-grained states. For example, the way a person

pronounces a phoneme is very affected by the phonemes which come before and after it. Further-

more, the pronunciation of a phoneme also varies during its pronunciation. These two observations

suggest that instead of modeling phonemes we should model context-dependent phonemes and that

each context-dependent phoneme should be split into three states: a beginning, a middle, and an end

state. Two common choices for context-dependent modeling are to use triphones or quinphones: a

triphone corresponds to a sequence of three phonemes, and a quinphone corresponds to a sequence

of five phonemes, where in both cases the central phoneme is the one being pronounced during the

state. Note, however, that this creates an explosion in the number of states. For example, using

quinphones, the total number of states becomes 3S5; this is because we create a unique HMM state

for the beginning, middle, and end for all S5 quinphones, where S is the number of phonemes.

For English, this would be approximately 500 million states (or around 250 thousand states, using

triphones), using the standard 44 English phonemes. This poses two problems: data sparsity, and

CHAPTER 2. PRELIMINARIES 35

model size. The problem of data sparsity is that there would likely not be enough examples of each

context-dependent state in the training data. In fact, some states might not appear at all. In this

case, this would make it impossible to effectively learn the parameters of these rare or unobserved

states. The other problem is model size; given that we have an emission model for each state, unless

we somehow intelligently share parameters between the emission models of each state, the amount

of memory required for the full acoustic model will scale linearly with the number of states. For

example, in the case of GMMs, at the very minimum we must store a single d-dimensional mean

for each state (if we assume identity covariance). This would have the additional effects of making

training as well as decoding very slow.

In order to address all of these problems related to having a very large number of context-

dependent states, the most common approach is to cluster states which are similar to one another

using decision tress [Hwang et al., 1993; Young et al., 1994]. These clustered states are called

senones, and there are typically on the order of 103 or 104 such states. For example, in the latest

state of the art English ASR system, Saon et al. use an ensemble of acoustic models, each with

32000 states [2017].

For more details on the use of HMMs for speech recognition, see [Gales and Young, 2007].

For information on how weighted finite state transducers (WFSTs) are used in order to efficiently

implement these HMMs in practice, combining the language model and the acoustic model into a

single large but efficient network, see [Mohri et al., 2002].

2.6.2 Using neural networks for acoustic modeling

As mentioned above, neural networks can also be used for acoustic modeling [Morgan and Bourlard,

1995]. However, neural network acoustic models differ in an important way from GMMs; instead

of modeling the emission probability p(x|q) directly, neural networks model p(q|x)—the posterior

probability distribution over all the HMM states given the acoustic feature vector x. Typically,

a neural network with a softmax output is used, where the dimension of the output is equal to the

number of states. Thus, when a network is fed an example x, its output can be seen as the conditional

probability distribution p(q|x) over the states that may have generated that example. In order to use

this “flipped” neural acoustic model in the existing HMM framework, we can simply use Bayes’

CHAPTER 2. PRELIMINARIES 36

Rule:

p(x|q) =
p(q|x)p(x)

p(q)

∝ p(q|x)

p(q)

Above, p(q) is a prior distribution over the HMM states, while p(q|x) is the output of the neural

acoustic model. One important detail, however, is that in order to train these probability models,

we must have a dataset of labeled examples (xi, qi). However, training sets for speech recognition

systems are typically in the form of transcribed utterances; this means that the only information

which is provided to the speech recognition system is what sequence of words was pronounced for

each utterance. Thus, we do not know in advance which state q was being pronounced for every

frame in an utterance. In order to deal with this problem, the following approach is taken: first, a

GMM system is trained using the EM algorithm on the training set. Then, this model is used to

force align the provided transcriptions with the acoustic frames, mapping each frame xi with its

corresponding HMM state qi; this can be done using the Viterbi algorithm [Viterbi, 1967]. These

automatically produced frame-level labels are then used in order to train the p(q) and p(q|x) models.

The p(q) model is trained through counting (e.g., the number of times a given state appeared in

the training data, over the total number of states observed), while p(q|x) is the output of a neural

network, often trained using the cross-entropy loss function, as discussed Section 2.5. In Section

4.1.3 we discuss alternative methods for training acoustic models, which more directly attempt to

lower the token error rate (TER) of the ASR system. These techniques are known as “sequence

training” methods, and they can lead to large improvements in the TER of the ASR system.

CHAPTER 3. RELATED WORK 37

Chapter 3

Related work

Scaling up kernel methods has been a long-standing and actively studied problem [Bottou et al.,

2007; Smola, 2014; DeCoste and Schölkopf, 2002; Platt, 1998; Tsang et al., 2005; Clarkson, 2010].

Approximating kernels by constructing explicit finite-dimensional feature representations, where

the dot product between these representations approximates the kernel function, has emerged as a

powerful technique (e.g., [Williams and Seeger, 2001; Rahimi and Recht, 2007]). The Nyström

method constructs these feature maps, for arbitrary kernels, via a low-rank decomposition of the

kernel matrix [Williams and Seeger, 2001]. For shift-invariant kernels, the random Fourier feature

technique of Rahimi and Recht [2007] uses random projections in order to generate the features.

Random projections can also be used to approximate a wider range of kernels [Kar and Karnick,

2012; Vedaldi and Zisserman, 2012; Hamid et al., 2014; Pennington et al., 2015]. Many recent

works have been developed to speed-up the random Fourier feature approach to kernel approxi-

mation. One line of work attempts to reduce the time (and memory) needed to compute the ran-

dom feature expansions by imposing structure on the random projection matrix [Le et al., 2013;

Yu et al., 2015]. It is also possible to use doubly-stochastic methods to speed-up stochastic gradient

training of models based on random features [Dai et al., 2014]. For kernels with sparse feature

expansions, [Sonnenburg and Franc, 2010] show how to efficiently scale kernel SVMs to datasets

with up to 50 million training samples by using sparse vector operations for parameter updates.

Despite much progress in kernel approximation, there have been very few applications of these

methods to challenging large-scale problems, or comparisons with deep learning on these tasks.

Notable exceptions are the following: on image recognition problems, it has been shown that

CHAPTER 3. RELATED WORK 38

random Fourier features can be used to replace the fully-connected layers on top of the convo-

lutional layers in the convolutional neural network (CNN) known as AlexNet [Krizhevsky et al.,

2012], and achieve comparable performance on the ImageNet 2012 dataset [Dai et al., 2014; Yang

et al., 2015]. However, these kernel models remain intrinsically tied to the CNN used to train

their input features, thus limiting the impact of this work. In ASR, the only existing works1

applying kernel approximation methods have been quite limited in scope [Huang et al., 2014;

Chen et al., 2016], using the relatively easy and small TIMIT dataset. While these papers pose the

acoustic modeling classification task as a regression problem that they solve in specialized ways, we

simply incorporate the random Fourier features into a multinomial logistic regression model, and are

able to outperform the results on TIMIT from this previous work. In general, a detailed evaluation

of kernel approximation methods on large-scale ASR tasks, together with a thorough comparison

with DNNs, has not been performed. Our work fills this gap, tackling challenging large-scale acous-

tic modeling problems, where deep neural networks achieve strong performance. Additionally, we

provide a number of important improvements to the kernel methods, which boost their performance

significantly.

One contribution of our work is to introduce a feature selection method that works well in

conjunction with random Fourier features in the context of large-scale multi-class classification

problems. Recent work on feature selection methods with random Fourier features, for binary

classification and regression problems, includes the Sparse Random Features algorithm of Yen et

al. 2014. This algorithm is a coordinate descent method for smooth convex optimization prob-

lems in the (infinite) space of non-linear features: each step involves solving a batch `1-regularized

convex optimization problem over randomly generated non-linear features (note that a natural ex-

tension of this method to multi-class problems is to use mixed norms such as `1/`2). Here, the

`1-regularization may cause the learned solution to only depend on a subset of the generated fea-

tures, allowing the others to be discarded. A drawback of this approach is the computational burden

of fully solving many batch optimization problems, which is prohibitive for large data sets. In our

attempts to implement an online variant of this method, using FOBOS [Duchi and Singer, 2009]

and `1/`2-regularization for the multi-class setting, we observed that very strong regularization was

required to obtain any intermediate sparsity, which in turn severely hurt prediction performance.

1Here, we are excluding the results presented in this thesis.

CHAPTER 3. RELATED WORK 39

Effectively, the regularization was so strong that this method basically selected features uniformly

at random from the pool of features. Our approach for selecting random features is more efficient,

and more directly ensures sparsity, than regularization. The basic idea behind our approach is to

iteratively train a model over a batch of random features, and to then replace the features whose

corresponding rows in the parameter matrix have small `2 norm. This method bears some similarity

to the methods of pruning neural networks which eliminate parameters whose magnitudes are below

a certain threshold [Ström, 1997; Han et al., 2015]; a difference is that in our method, we eliminate

entire rows of the parameter matrix, instead of individual entries.

Recent years have seen huge improvements in the performance of state-of-the-art speech recog-

nition systems. The most important factors leading to this success have been the following: se-

quence training [Povey et al., 2008; Povey et al., 2016], speaker adaptation through the use of

i-vectors [Dehak et al., 2011], training on large datasets [van den Berg et al., 2017; Saon et al.,

2017], and improved deep architectures for both language modeling [Mikolov et al., 2010; Sun-

dermeyer et al., 2012; Saon et al., 2017], and acoustic modeling. For acoustic modeling, CNNs

[Krizhevsky et al., 2012; Sainath et al., 2013b; Soltau et al., 2014; Simonyan and Zisserman, 2014;

Sercu and Goel, 2016; He et al., 2016; Saon et al., 2017] along with Long Short Term Mem-

ory (LSTM) networks [Sak et al., 2014; Saon et al., 2017], have been developed to leverage the

time-frequency structure of the speech signal, and achieve better performance than fully-connected

DNNs. The most recent state-of-the-art systems [Saon et al., 2017; Xiong et al., 2017] use an

ensemble of LSTMs and CNNs for acoustic modeling. In [Saon et al., 2016] they show an improve-

ment of 1.3% in WER on the switchboard dataset when switching from a sigmoid DNN architecture

to an LSTM, while in [Xiong et al., 2016] they show that their ResNet CNN [He et al., 2016] im-

proves upon ReLU DNNs by 1.6%.

In the context of these recent advances, our results showing competitive performance with fully-

connected feedforward sigmoid DNNs are significant, for a number of reasons. First of all, while no

longer being state-of-the-art, DNNs still attain very strong performance on the acoustic modeling

task. Second, fully-connected feedforward DNNs remain an important class of models, which are

used widely (e.g., [Andor et al., 2016]). Furthermore, fully-connected layers are an important

building block within more complex and specialized deep learning architectures [Simonyan and

Zisserman, 2014; He et al., 2016]. Additionally, we believe that it should be a matter of deep

CHAPTER 3. RELATED WORK 40

importance to the research community to discover when and why deep architectures are necessary,

while simultaneously working to explore which other families of models might be able to compete;

we think kernel methods are an important family of models to consider, as they lend themselves to

much simpler interpretation, as well as cleaner theoretical analysis based on convex optimization,

relative to DNNs. For future work, we would like to develop specialized kernel methods to better

leverage the structure in the speech signal, in a manner similar to CNNs and LSTMs.

This work also contributes to the debate on the relative strengths of deep and shallow models.

Kernel models can generally be seen as shallow models, given that they involve learning a linear

model on top of a fixed transformation of the data. Furthermore, as explained in Section 4.1.1, many

types of kernels (including popular kernels like the Gaussian kernel and the Laplacian kernel) can

actually be seen as a special case of a shallow neural network. Conversely, any neural network can be

understood as a kernel model, in which the kernel function itself is learned. Classic results show that

both deep and shallow neural networks, as well as kernel methods, are “universal approximators,”

meaning that they can approximate any real-valued continuous function with bounded support to an

arbitrary degree of precision [Cybenko, 1989; Hornik et al., 1989; Micchelli et al., 2006]. However,

a number of papers have argued that there exist functions which deep neural networks can express

with exponentially fewer parameters than shallow neural networks [Montúfar et al., 2014; Bianchini

and Scarselli, 2014]. Other papers have argued that kernel methods may require a number of training

samples which is exponential in the intrinsic dimension of the data manifold in order to generalize

well, a problem known as the curse of dimensionality [Härdle et al., 2004; Bengio and Lecun, 2007].

In [Ba and Caruana, 2014], the authors show that the performance of shallow neural networks can be

increased considerably by training them to match the outputs of deep neural networks. In showing

that kernel methods can compete with DNNs on large-scale speech recognition tasks, this work adds

credence to the argument that shallow models can compete with deep networks.

In Chapter 6, we perform large-scale comparisons between the Nyström method [Williams and

Seeger, 2001] and random Fourier features [Rahimi and Recht, 2007]. There is abundant literature

about both of these methods; this work is often concerned with either (1) proposing an improvement

to the method of interest [Le et al., 2013; Yu et al., 2015; Yen et al., 2014; May et al., 2016;

Zhang et al., 2008; Kumar et al., 2009; Si et al., 2014], (2) performing a theoretical analysis of

the method [Rahimi and Recht, 2008; Gittens and Mahoney, 2013; Kumar et al., 2012], or (3)

CHAPTER 3. RELATED WORK 41

performing an empirical evaluation of the method [Huang et al., 2014; May et al., 2017; Kumar et

al., 2012].

In spite of the abundant literature analyzing and building on each of these methods, there has

been relatively little work attempting to understand the important differences between them. One

notable exception is the work of Yang et al. [2012]; this work argues that from both theoretical

and empirical perspectives, the Nyström method is preferable to RFFs, for a fixed number of fea-

tures. They propose that the reason for this is that the Nyström method performs a data dependent

transformation, while RFF performs a data independent transformation. In our work, we go beyond

this existing work, in the following ways: (1) We perform experiments with many more random

features than the previous work. We use up to 20,000 Nyström features, and 1,600,000 random

Fourier features, whereas Yang et al. only use up to 1000. This exposes important differences be-

tween these two methods which are not evident in the smaller scale setting, while also allowing

us to attain much stronger performance on all datasets. (2) In addition to running experiments on

all six datasets used by Yang et al., we run experiments on TIMIT, a significantly larger and more

challenging dataset. We also include results on the relatively large YearPred regression task. (3)

We take into consideration the relative computational expense of computing m Nyström features

compared tom random Fourier features. (4) We make a novel observation, that random Fourier fea-

tures perform consistently better on classification and regression problems than Nyström features

with comparable kernel approximation error. (5) We analyze, from both theoretical and empiri-

cal perspectives, the differences in the ways Nyström features and random Fourier features make

approximation errors, and argue that these differences have a large effect on training.

Another important difference between our work and existing theoretical analyses of the Nyström

method [Gittens and Mahoney, 2013; Kumar et al., 2012], is that we analyze the element-wise errors

made by the Nyström method in approximation the kernel matrix, whereas existing work generally

analyzes the Frobenius norm or spectral norm of the full error matrix.

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 42

Chapter 4

Random Fourier features for acoustic

modeling

In this chapter, we discuss our experiments using random Fourier features for acoustic modeling on

four datasets, along with comparisons to fully-connected feedforward DNNs. These experiments

constitute the largest scale application to date of kernel approximation methods to a domain in which

DNNs dominate. We begin in Section 4.1 by providing an overview of the methods we leverage

in our experiments, including (1) our incorporation of random Fourier features in a multinomial

logistic regression model, (2) our use of low rank decompositions of the output matrices of our

models [Sainath et al., 2013a], and (3) our use of a metric called “Entropy Regularized Perplexity”

to determine learning rate decay and early stopping [Lu et al., 2016]. We then move on to discussing

our experiments: In Section 4.2 we describe the datasets we use, and our evaluation criteria. We then

give an overview of our training procedure, and provide details regarding hyperparameter choices, in

Section 4.3. We present our empirical results comparing the performance of kernel approximation

methods to DNNs in Section 4.4, showing that the kernel methods match the DNNs on two out

of four datasets. In Section 4.5 we discuss potential improvement to our DNN and kernel models

which we do not include in this work, and explain our decisions. We conclude in Section 4.6.

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 43

4.1 Methods

In this section we describe three methods we leverage in order to get strong performance for our

acoustic models.

4.1.1 Using kernel approximation methods for acoustic modeling

In order to train an acoustic model using kernel approximation methods, we can simply plug the

feature vector z(x) (for an acoustic frame x) into a multinomial logistic regression model:

p(y|x) =
exp

(
〈θy, z(x)〉

)
∑

y′ exp
(〈
θy′ , z(x)

〉) . (4.1)

The label y can take any value in {1, 2, . . . , C}, each corresponding to a senone, and the parameter

matrix Θ = [θ1| . . . |θC] is learned. Note that we also include a bias term, by appending a 1 to z(x)

in the equation above. We discuss how we train this model in Section 4.3.

In the case of random Fourier features, which is the method we use in this chapter, the model

in Equation 4.1 can be seen as a shallow neural network (single hidden layer), with the following

properties: (1) the parameters from the inputs x to the hidden units are set randomly, and are not

learned; (2) the hidden layer uses cos(·) as its activation function; (3) the parameters from the

hidden units to the output units are learned (can be optimized with convex optimization); and (4)

the softmax function is used to normalize the outputs of the network. See Figure 4.1 for a visual

representation of this model architecture. Note that although using sinusoidal activation functions

has been proposed previously [Goodfellow et al., 2016], their use has remained quite rare in the

deep learning context.

4.1.2 Linear bottlenecks

The number of senone state labels can be very large. In our experiments, this number varies from

147 to 5000. This significantly increases the number of parameters in Θ ∈ R(D+1)×C , where D is

the number of random features, and C is the number of output classes. We can reduce this number

with a linear bottleneck layer between the hidden layer and the output layer; the linear bottleneck

corresponds to a low-rank factorization Θ = UV of the parameter matrix [Sainath et al., 2013a].

We can think of UV as a lower-dimensional parametrization of Θ; instead of having a parameter

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 44

bias unitacoustic features

︸ ︷︷ ︸

state labels

random numbers cosine

transfer

Figure 4.1: Kernel-acoustic model seen as a shallow neural network

for each element of Θ, our parameters correspond to the elements of U and V . If we let r denote

the rank of this decomposition of Θ, then U ∈ R(D+1)×r and V ∈ Rr×C . This is particularly

effective at reducing the number of parameters in our kernel models. Without this trick, the number

of parameters is dim(Θ) = (D + 1)C, where dim(Θ) denotes the number of elements in Θ; with

this trick, the number becomes dim(U) + dim(V) = (D + 1)r + rC, which is significantly less

than (D + 1)C when r � min(D,C). During training, we learn the parameters of U and V

using gradient descent. Using a linear bottleneck strictly decreases the capacity of the resulting

model, while unfortunately rendering the optimization problem non-convex. This method can be

understood as a regularization technique, which typically improves the generalization performance

of a trained model, as we will show in Section 4.4.

It is important to note that one can also replace a parameter matrix with a low-rank decompo-

sition after training has completed, for example, using singular value decomposition [Xue et al.,

2013]. However, in the context of our work it was necessary to impose the low-rank decomposition

before training, given our GPU memory constraints.

4.1.3 Entropy regularized perplexity (ERP)

Another method we leverage in order to improve the recognition performance of our models is to

use a metric called “entropy regularized perplexity” (ERP) in order to decide when to decay our

learning rate [Lu et al., 2016]. ERP is defined as the sum of a model’s cross-entropy (CE) and

its entropy (ENT), and is thus efficient to calculate. More formally, on a set of labeled points

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 45

{(x1, y1), . . . , (xN , yN)}, the ERP is defined as follows:

ERP = CE + ENT

= − 1

N

N∑

i=1

log p(yi|xi) +− 1

N

N∑

i=1

C∑

y=1

p(y|xi) log p(y|xi).

This metric can be thought of as a more “lenient” version of the cross-entropy criterion, meaning

that it doesn’t penalize points on which the model assigns very low probability to the correct label

as harshly as CE does. It accomplishes this by rewarding the model for giving confident answers

(lower ENT), regardless of whether the answers are correct. Lu et al. demonstrate that on the large

number of models they trained, there was a very high correlation between a model’s heldout ERP

and its development set token error rate (TER). In particular, it exhibited much higher correlation

with TER than the heldout cross-entropy did. Thus, in our work we leverage this observation by

calculating the ERP on our heldout sets at the end of every epoch of training, and using this to

determine whether or not to decay our learning rate, as well as whether to terminate the training. In

practice, this results in the training continuing past the point of lowest heldout cross-entropy, and

producing models with lower heldout entropy (and lower ERP), but slightly higher cross-entropy.

As we show in Section 4.4, using the ERP metric in this way generally leads to improved recognition

performance relative to using the heldout cross-entropy.

This method shares the same goal as another set of methods known as sequence training tech-

niques; in particular, the goal is to train the acoustic model in such a way that it performs better in

terms of recognition performance (TER). There are a number of different sequence training crite-

ria which have been proposed, including maximum mutual information (MMI) [Bahl et al., 1986;

Valtchev et al., 1997], boosted MMI (BMMI) [Povey et al., 2008], minimum phone error (MPE)

[Povey and Woodland, 2002], or minimum Bayes risk (MBR) [Kaiser et al., 2000; Gibson and Hain,

2006; Povey and Kingsbury, 2007]. These methods, though originally proposed for training Gaus-

sian mixture model (GMM) acoustic models, can also be used for neural network acoustic models

[Kingsbury, 2009; Veselý et al., 2013]. Nonetheless, all of these methods are quite computationally

expensive and are typically initialized with an acoustic model trained via the frame-level cross-

entropy criterion. The ERP method, by contrast, is very simple, only making a small change to the

frame-level training process. Furthermore, it can be used in conjunction with the above-mentioned

sequence training techniques, by providing a better initial model. Recently, [Povey et al., 2016]

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 46

showed that it is possible to train an acoustic model using only sequence-training methods, with

the lattice-free version of the MMI criterion. In a similar vein, the Connectionist Temporal Classi-

fication (CTC) method for acoustic model training directly models the conditional probabilities of

sequences of labels, thus also eliminating the need for frame-level training altogether [Graves et al.,

2006]. For future work, we would like to see how much our kernel models can benefit from the

various sequence training methods mentioned above, relative to DNNs.

4.2 Tasks, datasets, and evaluation metrics

We train both DNNs and kernel-based multinomial logistic regression models, as described in Sec-

tion 4.1, to predict HMM state labels from acoustic feature vectors. We test these methods on four

datasets. Each dataset is divided in four: a training set, a heldout set, a development set, and a test

set. We use the heldout set to tune the hyperparameters of our training procedure (e.g., learning

rate, kernel bandwidth). We then use the development set to select a small subset of models which

perform best in terms of TER (e.g., the best kernel model, and the best DNN model, per dataset).

Finally, we evaluate this select group of models on the test set, in order to get a fair comparison

between the methods we are using. Having a separate development set helps us avoid the risk of

over-fitting to the test set.

The first two datesets we use are the IARPA Babel Program Cantonese (IARPA-babel101-v0.4c)

and Bengali (IARPA-babel103b-v0.4b) limited language packs. Each pack contains a 20-hour train-

ing set, a 20-hour development set, and a 30-hour test set. We designate about 10% of the training

data as a heldout set. The training, heldout, development, and test sets all contain different speakers.

Babel data is challenging because it is two-person conversations between people who know each

other well (family and friends) recorded over telephone channels (in most cases with mobile tele-

phones) from speakers in a wide variety of acoustic environments, including moving vehicles and

public places. As a result, it contains many natural phenomena such as mispronunciations, disfluen-

cies, laughter, rapid speech, background noise, and channel variability. An additional challenge in

Babel is that the only data available for training language models is the acoustic transcripts, which

are relatively small. The third dataset is a 50-hour subset of Broadcast News (BN-50) [Kingsbury,

2009; Sainath et al., 2011; van den Berg et al., 2017], which is a well-studied benchmark task in

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 47

the ASR community. It has 45 hours of training data, and a 5 hour heldout set. For the development

set, we use the “Dev04F” dataset provided by LDC, which consists of 2 hours of broadcast news

from various new shows. We use the RT-03 Rich Transcription NIST benchmark test as our test set,

consisting of 72 five minute conversations. The last dataset we use is TIMIT [Garofolo et al., 1993],

which contains recordings of 630 speakers, of various English dialects, each reciting ten sentences,

for a total of 5.4 hours of speech. The training set (from which the heldout set is then taken) consists

of data from 462 speakers each reciting 8 sentences (SI and SX sentences). The development set

consists of speech from 50 speakers. For evaluation, we use the “core test set”, which consists of

192 utterances total from 24 speakers (SA sentences are excluded). For reference, we use the exact

same features, labels, and divisions of the dataset, as [Huang et al., 2014] and [Chen et al., 2016],

which allows direct comparison of our results with theirs.

The acoustic features, representing 25 ms acoustic frames with context, are real-valued dense

vectors. For the Cantonese, Bengali, and Broadcast News datasets we use a standard 360-dimensional

speaker-adapted representation used by IBM [Kingsbury et al., 2013]; these vectors are the concate-

natation of nine 40-dimensional vectors, corresponding to features for the current frame, and the

four frames before and after. The state labels are obtained via forced alignment using a GMM/HMM

system. For the TIMIT experiments, we use 40 dimensional feature space maximum likelihood lin-

ear regression (fMLLR) features [Gales, 1998], and concatenate the 5 neighboring frames in either

direction, for a total of 11 frames and 440 features.

The Cantonese and Bengali datasets each have 1000 labels, corresponding to quinphone context-

dependent HMM states clustered using decision trees. For Broadcast News, there are 5000 such

states. The TIMIT dataset has 147 context-independent labels, corresponding to the beginning,

middle, and end of 49 phonemes.

For all datasets, the number of frames significantly exceeds typical machine learning tasks tack-

led by kernel methods. In particular our training sets all contain between 2 and 16 millions frames.

Additionally, the large number of output classes for our datasets also presents a scalability chal-

lenge, given that the size of the kernel models scales linearly with the number of output classes (if

no bottleneck is used). Table 4.1 provides details on the sizes of all the datasets (in terms of the

number of acoustic frames), as well as on their number of features and classes.

We use five metrics to evaluate the acoustic models:

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 48

Dataset Train Heldout Dev # Features # Classes

Beng. 7.7M 1.0M 7.1M 360 1000

BN-50 16M 1.8M 0.7M 360 5000

Cant. 7.5M 0.9M 7.2M 360 1000

TIMIT 2.3M 0.2M 0.1M 440 147

Table 4.1: Dataset details

1. Cross-entropy (CE): Given examples, {(xi, yi), i = 1 . . . N}, the cross-entropy is defined as

− 1

N

N∑

i=1

log p(yi|xi). (4.2)

2. Average Entropy (ENT): The average entropy of a model is defined as

− 1

N

N∑

i=1

C∑

y=1

p(y|xi) log p(y|xi)

If a model has low average entropy, it is generally confident in its predictions.

3. Entropy Regularized Perplexity (ERP): Defined in Section 4.1.3. Equal to CE + ERP .

4. Classification Error (ERR): The classification error is defined as

1

N

N∑

i=1

1

[
yi 6= arg max

y∈1,2,...,C
p(y|xi)

]
.

5. Token Error Rate (TER): Defined in Section 2.6. This metric measures the amount of errors

made by the output of the ASR system, relative to the reference transcription of an utterance.

For Bengali and BN-50, we measure the error in terms of the word error rate (WER), for

Cantonese we use the character error rate (CER), and for TIMIT we use the phone error rate

(PER). We use the term “token error rate” (TER) to refer, for each dataset, to its corresponding

metric.

4.3 Details of acoustic model training

All our kernel models were trained with either the Laplacian or the Gaussian kernel. These kernel

models typically have 3 hyperparameters: the kernel bandwidth (σ for the Gaussian kernels, λ for

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 49

1000 2000 4000

3 17.5 16.8 16.7

4 17.1 16.4 16.5

5 16.9 16.5 16.7

6 17.0 16.5 16.6

Table 4.2: Effect of depth and width on DNN TER (development set): This table shows TER results

for DNNs with 1000, 2000, or 4000 hidden units per layer, and 3-6 layers, on the Broadcast News

development dataset. All of these models were trained using a linear bottleneck for the output

parameter matrix, and using entropy regularized log loss for learning rate decay. The best result is

in bold.

the Laplacian kernel; see Table 2.2), the number of random projections, and the initial learning rate

of the optimization procedure. As a rule of thumb, we begin our search for a good setting of our

kernel bandwidth parameter (specifically, 2σ2 for the Gaussian kernel, and 1/λ for the Laplacian

kernel) at around the median of the pairwise distances in the data (squared `2 distance for Gaussian

kernel, `1 distance for Laplacian kernel). We try various numbers of random features, ranging from

5k to 200k. Using more random features leads to a better approximation of the kernel function, as

well as to more powerful models, though there are diminishing returns as the number of features

increases.

For all DNNs, we tune hyperparameters related to both the architecture and the optimization.

This includes the number of layers, the number of hidden units in each layer, and the learning rate.

We perform 1 epoch of layer-wise discriminative pre-training [Seide et al., 2011b; Kingsbury et al.,

2013], and then train the entire network jointly using SGD. We find that 4 hidden layers is generally

the best setting for our DNNs, so all the DNN results we present in this paper use this setting; in

Table 4.2 we show how depth affects recognition performance on the Broadcast News dataset. As

you can see, using more than 4 hidden layers does not improve performance. Additionally, all our

DNNs use the tanh activation function. We vary the number of hidden units per layer (1000, 2000,

or 4000). We use this same set of DNN architectures for all our datasets.

For both DNN and kernel models, we use stochastic gradient descent (SGD) as our optimization

algorithm, with a mini-batch size of 250 or 256 samples, using the cross-entropy loss function

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 50

(Equation 4.2). We use the heldout set to tune the other hyperparameters (e.g., learning rate). We

use the learning rate decay scheme described in [Morgan and Bourlard, 1990; Sainath et al., 2013a;

Sainath et al., 2013c], which monitors cross-entropy performance on the heldout set in order to

decide when to decay the learning rate. This method divides the learning rate in half at the end of an

SGD epoch if the heldout cross-entropy doesn’t improve by at least 1%; additionally, if the heldout

cross-entropy gets worse, it reverts the model back to its state at the beginning of the epoch. In this

work, we additionally experiment with using the heldout performance of the “Entropy Regularized

Perplexity” (ERP) metric proposed by Lu et al. [Lu et al., 2016], instead of the heldout cross-

entropy, in order to determine learning rate decay; given the high correlation between heldout ERP

and development set TER, this generally leads to better recognition performance than using cross-

entropy.

We train models both with and without linear bottlenecks in the output matrix; the only excep-

tion is that we are unable to train BN50 kernel models without the bottleneck of size 1000 due to

memory constrains on our GPUs. We use bottlenecks of size 1000, 250, 250, and 100 for BN50,

Bengali, Cantonese, and TIMIT, respectively.

We initialize our DNN parameters uniformly at random in the range [−
√
6√

din+dout
,

√
6√

din+dout
], as

suggested by [Glorot and Bengio, 2010]; here, din and dout refer to the dimensionality of the input

and output of a DNN layer, respectively. For our kernel models, we initialize the random projection

matrix as discussed in Section 2, and we initialize the output matrix as the zero matrix. When

using a linear bottleneck to decompose the output matrix, we initialize the resulting two matrices

randomly, as in [Glorot and Bengio, 2010].

All our training code is written in MATLAB, leveraging its GPU capabilities. We execute our

code on Amazon EC2 machines, with instances of type g2.2xlarge. We use StarCluster1 to more

easily manage our clusters of EC2 machines.

4.4 Results

In this section, we report the results from our experiments comparing kernel methods to deep neural

networks (DNNs) on ASR tasks. We report results on all 4 datasets. For both DNN and kernel

1http://star.mit.edu/cluster

http://star.mit.edu/cluster

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 51

methods, we train models with and without linear bottlenecks, and with and without using ERP

to determine learning rate decay. For our kernel experiments, we use 100k random features on

all datasets expect for TIMIT, where we are able to use 200k random features (because the output

dimensionality is lower); we run experiments with both the Laplacian and the Gaussian kernels. For

our DNN experiments, we train models with 4 hidden layers,2 using the tanh activation function,

and using either 1k, 2k, or 4k hidden units per layer. We focus on comparing the performance of

these methods in terms of TER, but we also report results in terms of cross-entropy and classification

error. Unless specified otherwise, all TER results are on the development set, and all cross-entropy,

entropy, ERP, and classification error results are on the heldout set. In each table, the best result for

each language is shown in bold.

In Tables 4.3 and 4.4, we show our TER results for our DNN and kernel models, respectively,

across all datasets. There are many things to notice about these results. First of all, our best DNNs

and kernels are tied on Cantonese and TIMIT, but the DNNs win by a relatively wide margin on

both Bengali and Broadcast News (BN50). Within the kernel models, we see that incorporating a

linear bottleneck brings large drops in TER across the board (recall that we are unable to train BN50

kernel models without using a bottleneck because the resulting models would not fit on our GPUs).

Using the ERP metric to determine when to decay the learning rate also helps all our kernel models

attain lower TER values. Typically, the Gaussian kernel, combined with these two methods, attains

the lowest TER results (or close to it).

For our DNN models, linear bottlenecks almost always lower TER values, though in a few cases

they have no effect on TER. Using ERP to determine when to decay the learning rate generally helps

lower TER values for our DNNs, but in a few cases it actually hurts (Cantonese 4k, and TIMIT 2k

and 4k). The DNNs with 4k hidden units typically attain the best results, though on a couple datasets

they are matched or narrowly beaten by the 2k models.

In Table 4.5, for each dataset we compare the performance of the best DNN model with the best

kernel model, across 5 metrics: cross-entropy (CE), entropy (ENT), entropy regularized perplexity

(ERP), classification error (ERR), and Token Error Rate (TER). In terms of cross-entropy and ERP,

the DNNs outperform the kernels on all datasets except TIMIT. On all datasets the DNNs were

more confident in their predictions (lower entropy) than the kernels. In terms of classification error,

2As mentioned in Section 4.3, and shown in Table 4.2, we find that this is generally the best setting.

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 52

1k 2k 4k

NT B R BR NT B R BR NT B R BR

Beng. 72.3 71.6 71.7 70.9 71.5 71.1 70.7 70.3 71.1 70.6 70.5 70.2

BN-50 18.0 17.3 17.8 17.1 17.4 16.7 17.1 16.4 16.8 16.7 16.7 16.5

Cant. 68.4 68.1 67.9 67.5 67.7 67.7 67.2 67.1 67.7 67.1 67.2 67.2

TIMIT 19.5 19.3 19.4 19.2 19.0 18.9 19.2 19.2 18.6 18.6 18.7 18.9

Table 4.3: DNN TER Results (development set): ‘B’ specifies that a linear bottleneck is used, ‘R’

specifies that ERP is used (‘BR’ means both are used), and ‘NT’ signifies that neither are used.

Laplacian Gaussian

NT B R BR NT B R BR

Beng. 74.5 72.1 74.5 71.4 72.6 72.0 72.6 71.8

BN-50 N/A 17.9 N/A 17.7 N/A 17.3 N/A 17.1

Cant. 69.9 68.2 69.2 67.4 70.2 67.6 70.0 67.1

TIMIT 20.6 19.2 20.4 18.9 19.8 18.9 19.6 18.6

Table 4.4: Kernel TER Results (development set): ‘B’ specifies that a linear bottleneck is used,

‘R’ specifies that ERP is used (‘BR’ means both are used), and ‘NT’ signifies that neither are used.

TIMIT models use 200k random features, and all others use 100k features.

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 53

Beng (D/K) BN50 (D/K) Cant (D/K) TIMIT (D/K)

CE 1.243 / 1.315 2.001 / 2.052 1.916 / 1.931 1.056 / 0.9423

ENT 0.9079 / 1.082 1.274 / 1.457 1.375 / 1.516 0.447 / 0.6076

ERP 2.302 / 2.473 3.548 / 3.691 3.459 / 3.556 1.671 / 1.648

ERR 0.2887 / 0.3041 0.4887 / 0.501 0.4353 / 0.4342 0.324 / 0.3148

TER 70.2 / 71.4 16.4 / 17.1 67.1 / 67.1 18.6 / 18.6

Table 4.5: Table of Best DNN vs. Kernel results, across 4 datasets and 5 metrics.

the DNNs did better on Bengali and BN50, while the kernels did better on Cantonese and TIMIT.

Overall, the DNNs did slightly better than the kernels, though kernels were typically not far behind.

We include more detailed results in Appendix C.

We will now illustrate the importance of the number of random features D on the final perfor-

mance of the model. For this purpose, we trained a number of different models on the BN50 dataset,

using D ∈ {5k, 10k, 25k, 50k, 100k}. We trained models using both kernels. We used a linear bot-

tleneck of size 1000 for all these models, and used heldout cross-entropy to determine the learning

rate decay. In Figure 4.2, we show how increasing the number of features dramatically improves the

performance of the learned model, both in terms of cross-entropy and TER; there are diminishing

returns, however, with small improvements in TER when increasing D from 50k to 100k. This

shows that in order to attain strong performance with these kernel approximation methods, it is very

important to use a very large number of features.

4.5 Other Possible Improvements to DNNs and Kernels

It is important to mention a few things regarding other ways the performance of our DNN and kernel

models could be improved, and why they are not investigated at length in this work. For the kernel

methods, given that the optimization is convex when no bottleneck is used, it would be possible to

get stronger convergence guarantees using the Stochastic Average Gradient (SAG) algorithm instead

of SGD for training [Le Roux et al., 2012]. In fact, in [Lu et al., 2016] we did this on Cantonese and

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 54

5 10 25 50 100
D / 1000

2

2.1

2.2

2.3

2.4
H

el
do

ut
 C

ro
ss

-E
nt

ro
py

Laplacian
Gaussian

5 10 25 50 100
D / 1000

17

18

19

20

21

T
E

R
 (

%
)

Laplacian
Gaussian

Figure 4.2: Performance of kernel acoustic models on BN50 dataset, as a function of the num-

ber of random features D used. Results are reported in terms of heldout cross-entropy as well as

development set TER. The color and shape of the markers indicate the kernel used.

Bengali, and attained strong recognition performance.3 Unfortunately, it is challenging to scale this

algorithm to larger tasks, since it requires storing, for every training example, the previous gradient

of the loss function at that example. Because ∂L(xi,yi)
∂θy

= z(xi)[I(y = yi) − p(y|xi)], and because

z(xi) is fixed, the gradient information can be stored by simply storing, for each training example,

the vector pi = [p(1|xi), . . . , p(C|xi)]. However, this still takes NC storage, which is quite expen-

sive when there are millions of training examples N and thousands of output classes C (320 GB for

the Broadcast News dataset, for example). Unfortunately, once a bottleneck is introduced, not only

is the optimization problem non-convex, but we must also store the full gradients, thus making the

memory requirement too large. As a result, for scalability reasons, as well as for consistency across

all our experiments, we have used SGD for all our kernel experiments. Additionally, we did not

investigate the use of sequence training techniques for our kernel methods, leaving this for future

work.

For our DNN models, we have observed that restricted Boltzmann machine (RBM) pre-training

[Hinton et al., 2006] often improves recognition performance [Lu et al., 2016]. Additionally, as

3A few more details regarding the experiments in [Lu et al., 2016]: we did not use feature selection in that work,

and we only used ERP as a model selection criterion (not for learning rate decay). Additionally, instead of training the

large kernel models jointly, we trained them in blocks of 25,000 random features, and then combined the models via logit

averaging (final models had 200,000 random features).

CHAPTER 4. RANDOM FOURIER FEATURES FOR ACOUSTIC MODELING 55

discussed in the introduction, there are various other deep architectures (e.g., CNNs, LSTMs), as

well as numerous training techniques (e.g., momentum [Sutskever et al., 2013], dropout [Srivas-

tava et al., 2014], batch normalization [Ioffe and Szegedy, 2015]), which can further improve the

performance of neural networks. However, as we have mentioned, our goal for this paper was to

provide a comparison between kernel methods and a strong DNN baseline (DNN with tanh activa-

tion, and discriminative pre-training), not to build a state-of-the-art speech recognition system, or to

provide an exhaustive comparison against all possible deep learning architectures and optimization

methods.

4.6 Conclusion

In this chapter, we have shown that kernel approximation methods can be scaled to large scale

acoustic modeling tasks, using a simple multinomial logistic regression model, trained with SGD.

We demonstrated across four datasets that the performance of these kernel models is near that of

DNNs, matching their performance on two datasets, and performing slightly worse on the other two.

We showed that using a linear bottleneck can speed up training, reduce the number of parameters

needed, and significantly improve the performance of a model. We have also shown that using held-

out ERP for deciding learning rate decay is an effective and cheap way of improving the recognition

performance of a model.

These kernel models require a very large number of features in order to attain strong perfor-

mance. We see that even at 100k features, there are marginal gains from increasing the number of

features. In the next chapter, we explore how to reduce the number of features required to attain a

given level of performance, using a feature selection method.

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 56

Chapter 5

Compact kernel models via random

feature selection

In this chapter, we present a feature selection algorithm which provides significant performance

gains to kernel models under a fixed memory budget. Our algorithm is iterative, at each step search-

ing through large numbers of random features, selecting a subset, and discarding the rest. We begin

by describing and motivating our proposed feature selection algorithm in Section 5.1. We then de-

scribe a new “sparse Gaussian kernel” in Section 5.2, which behaves nicely in conjunction with the

feature selection algorithm. In Section 5.3 we present experimental results demonstrating the ef-

fectiveness of this method on ASR, and comparing performance with fully-connected feedforward

DNNs. We show that using our proposed feature selection algorithm, along with the methods pre-

sented in Chapter 4, we are able to perform on par with DNNs. We then discuss the dynamics of the

feature selection process in Section 5.4, showing that features that are selected in early iterations

typically survive all remaining rounds. We conclude in Section 5.5.

5.1 Random feature selection

Our proposed feature selection method, shown in Algorithm 1, is iterative; at each step, a subset

of random features are selected from a pool, while the rest are discarded and replaced with new

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 57

Algorithm 1 Random feature selection
input Target number of random features D, data subset size R,

selection schedule 0 = s0 < s1 < · · · < sT = D.

1: initialize feature pool P := ∅.

2: for t = 1, 2, . . . , T do

3: Generate D − st−1 new random features, and add them to P .

4: Learn weights W ∈ RP×C over the D features in P using a single pass of SGD over R

randomly selected training examples.

5: Select st features j ∈ P for which
∑C

c=1(Wj,c)
2 are largest; discard the remaining D − st.

6: end for

7: return Final collection of D random features P .

random features. The selection criterion is based on a feature’s weights,1 which are learned using

stochastic gradient descent (SGD).

This method has the following advantages: The overall computational cost is mild, as it requires

just T passes through subsets of the data of sizeR (equivalent to≈ TR/n full SGD epochs). In fact,

in our experiments, we find it sufficient to use R = O(D). Note that this is less computationally

demanding than fully solving an `1-regularized optimization problem, as in the Sparse Random

Features method of [Yen et al., 2014]. Moreover, the method is able to explore a large number of

non-linear features, while maintaining a compact model. If st = Dt/T , then the learning algorithm

is exposed to roughlyDT/2 random features throughout the feature selection process. For example,

if T = 50 and D = 100k, this algorithm considers around 2.5 million features; this is a typical

setting for our experiments. We show in Section 5.3 that this empirically increases the predictive

quality of the selected features.

It is important to note the similarities between this method, and the FOBOS method with `1/`2-

regularization [Duchi and Singer, 2009]. In the latter method, one solves the `1/`2-regularized

problem in a stochastic fashion by alternating between taking unregularized stochastic gradient de-

scent (SGD) steps, and then “shrinking” the rows of the parameter matrix; each time the parameters

are shrunk, the rows whose `2-norm is below a threshold are set to 0. After training completes, the

1The weights corresponding to the feature zi(x) in the model f(x) = W Tz(x) are those in the ith row of W .

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 58

solution will likely have some rows which are all zero, at which point the features corresponding to

those rows can be discarded. In our method, on the other hand, we take many consecutive unregu-

larized SGD steps, and only thereafter do we choose to discard the rows whose `2-norm is below a

threshold.2 As mentioned in the Related Work section, our attempts at using FOBOS for feature se-

lection failed, because the amount of regularization needed in order to produce a sparse model was

so strong that it dominated the learning process; as a result, the models learned performed terribly,

and the selected features were essentially random.

One disadvantage of our method is that the index used for selection may misrepresent the fea-

tures’ actual predictive utilities. For instance, the presence of some random feature i ∈ P may

increase or decrease the weights for other random features relative to what it would be if i /∈ P . An

alternative would be to consider features in isolation, and add features one at a time (as in stagewise

regression methods and boosting), but this would require many passes through the data, which is

expensive due to the I/O overhead of each pass. We find empirically that the influence of the addi-

tional random features in the selection criterion is tolerable, and it is still possible to select useful

features with this method.

5.2 A sparse Gaussian kernel

In Section 5.3 we will show that when we perform feature selection on models using the Laplacian

kernel, we see much larger improvements in performance than for models using the Gaussian ker-

nel. This leads us to study what might be the cause of this large difference. In particular, we study

the differences in the sampling distributions used to approximate each of these kernels. Recall from

Table 2.2 that for the Laplacian kernel, the sampling distribution used for the random Fourier fea-

tures is the multivariate Cauchy density p(ω) ∝
∏d
i=1(1+ω2

i)
−1 (we let λ = 1 here for simplicity).

If we draw ω = (ω1, . . . , ωd) from p, then each ωi has a two-sided fat tail distribution, and hence ω

will typically contain some entries much larger than the rest.

This property of the sampling distribution implies that many of the random features generated

in this way will each effectively concentrate on a few of the input features. We can thus regard

2Note that if we are using a linear bottleneck to decomposeW into U ·V , we first computeW = UV , and then select

features based on the `2-norm of the rows of W

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 59

each such random feature as being a non-linear combination of a small number of the original input

features. Thus, the feature selection method is effectively picking out useful non-linear interactions

between small sets of input features.

We can also directly construct sparse non-linear combinations of the input features. Instead of

relying on the properties of the Cauchy distribution, we can choose a small number k of coordinates

F ⊆ {1, 2, . . . , d}, say, uniformly at random, and then choose the random vector ω so that it is

always zero in positions outside ofF ; the same non-linearity (e.g., x 7→ cos(ωTx+b)) can be applied

once the sparse random vector is chosen. Compared to the random Fourier feature approximation

to the Laplacian kernel, the vectors ω chosen this way are truly sparse, which can make the random

feature expansion more computationally efficient to apply (if efficient sparse matrix operations are

used).

Note that random Fourier features with such sparse sampling distributions in fact correspond

to shift-invariant kernels that are rather different from the Laplacian kernel. For instance, if the

non-zero entries of ω are chosen as i.i.d.N (0, σ−2), then the corresponding shift-invariant kernel is

k(x, x′) =
∑

F⊆{1,2,...,d}:|F |=k

(
d

k

)−1∏

i∈F
exp

(
−(xi − x′i)2

2σ2

)
. (5.1)

The kernel in Eq. (5.1) puts equal emphasis on all input feature subsets F of size k. However, the

feature selection may effectively bias the distribution of the feature subsets to concentrate on some

smaller family of input feature subsets. We call this kernel the sparse Gaussian kernel.

5.3 Results

The results in this section build on those from Section 4.4. In particular, we perform feature selection

as a first step prior to training our kernel models, and demonstrate that this improves performance.

We also show results for the sparse Gaussian kernel, with and without using feature selection.

Regarding implementation details and hyperparameter choices: For each iteration of random

feature selection, we draw a random subsample of the training data of size R = 106 (except when

D ≥ 105, in which case we use R = 2×106, to ensure a safe R to D ratio). Thus, each iteration of

feature selection has equivalent computational cost to aR/N fraction of an SGD epoch, whereN is

the total number of training points. For example, on the Broadcast News dataset, this corresponds to

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 60

roughly 1/16 or 1/8 of an epoch, forD < 105 andD ≥ 105, respectively. We use T = 50 iterations

of feature selection, and in iteration t, we select st = t · (D/T) = 0.02Dt random features. Thus,

the total computational cost we incur for feature selection is equivalent to approximately three or

six epochs of training on Broadcast News.3 After feature selection completes, we train the model

using the features which have been selected. For all experiments with the sparse Gaussian kernel,

we use k = 5.

In Table 5.1 we show the performance of our kernel models, using all three kernels (Laplacian,

Gaussian, sparse Gaussian), with and without feature selection. All of these models use 100k

random features, except for the TIMIT models, which use 200k random features. There are several

things to notice about these results. First of all, we see that performing feature selection improves

TER considerably for the Laplacian kernel, and modestly for the sparse Gaussian kernel. For the

Gaussian kernel, it typically helps, though there are several instances in which feature selection

hurts TER (see Section 5.4 for discussion). Secondly, we see that without using feature selection,

the sparse Gaussian kernel has the best performance across the board. After we include feature

selection, it performs very comparably to the Laplacian kernel with feature selection. In general,

the kernel models which perform best are the Laplacian and sparse Gaussian kernels with feature

selection (as well as with bottleneck and ERP). It is interesting to note that without using feature

selection, the Gaussian kernel is generally better than the Laplacian kernel; however, with feature

selection, the Laplacian kernel surpasses the Gaussian kernel (see Section 5.4). In general, the kernel

function which performed best, across the majority of settings, was the sparse Gaussian kernel.

In order to see whether we could attain even stronger performance with our kernel models by

using more random features, we trained a small number of models with up to 400k features on

Broadcast News, our most challenging dataset. Due to the large computational expense of training

these models, we only trained a few, and only used the Laplacian and sparse Gaussian kernels, as

these attained the best performance after feature selection, in terms of TER. We report results in

Table 5.2. All of these models were trained with a linear bottleneck of size 1000, and using ERP

for learning rate decay. We include results using 100k random features in this table for comparison.

As you can see, our best kernel model on BN-50 now attains a TER of 16.4%, which if you recall

3It is possible that feature selection could remain effective using much smaller random subsamples of the training set.

This would make the feature selection process a lot faster, though this is not something we carefully tested.

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 61

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 74.5 72.1 74.5 71.4 72.6 72.0 72.6 71.8 73.0 71.5 73.0 70.9

+FS 72.9 71.1 72.8 70.4 74.1 71.4 74.2 70.3 72.9 71.2 72.8 70.7

BN-50 N/A 17.9 N/A 17.7 N/A 17.3 N/A 17.1 N/A 17.3 N/A 17.0

+FS N/A 17.1 N/A 16.7 N/A 17.5 N/A 17.0 N/A 17.1 N/A 16.7

Cant. 69.9 68.2 69.2 67.4 70.2 67.6 70.0 67.1 68.6 67.5 68.1 67.1

+FS 68.4 67.5 68.5 66.7 69.9 67.7 69.8 66.9 68.6 67.4 68.5 66.8

TIMIT 20.6 19.2 20.4 18.9 19.8 18.9 19.6 18.6 19.9 18.8 19.6 18.4

+FS 19.5 18.6 19.3 18.4 19.5 18.6 19.4 18.4 19.3 18.4 19.1 18.2

Table 5.1: Kernel TER Results (development set):‘B’ specifies that a linear bottleneck is used, ‘R’

specifies that ERP is used (‘BR’ means both are used), and ‘NT’ signifies that neither are used.

‘+FS’ specifies that feature selection was used for the experiments in that row. TIMIT models use

200k random features, and all others use 100k features.

from Section 4.4 is equal to the performance of our best DNN model. Furthermore, we continue

to see improvements in the performance of our kernel models, even as we increase our number of

features beyond 100k; for the Laplacian kernel we get a gain of 0.3% in TER when increasing from

100k to 400k (both with and without feature selection), while for the sparse Gaussian kernel we

get gains of 0.2% and 0.4%, with and without feature selection (respectively). To date, these are

the largest models we have trained, though it seems likely we could continue getting performance

improvements with even larger models.

In Table 5.3, we compare for each dataset the performance of the best DNN model with the best

kernel model, across 6 metrics. Importantly, for each metric (except for test set TER), we find the

kernel and DNN model which performs best for that specific metric; this is in contrast to picking

the kernel and DNN models which are best in terms of TER, and reporting all metrics on these

models. For Broadcast News, we consider the kernel models from Table 5.2 with 200k and 400k

random features, along with those in Table 5.1, in the process of finding the best performing models.

In terms of heldout cross-entropy, the kernels outperformed the DNNs on Cantonese and TIMIT,

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 62

100k 200k 400k

Laplacian 17.7 17.7 17.4

+FS 16.7 16.4 16.4

Sparse Gaussian 17.0 16.8 16.6

+FS 16.7 16.6 16.5

Table 5.2: Kernel TER Results on Broadcast News development set for models with a very large

number of random feature (up to 400k). All models use a bottleneck of size 1000, and use ERP for

learning rate decay.

while the DNNs beat the kernels on Bengali and BN-50. With regard to classification error, the

kernels beat the DNNs on all datasets except for Bengali. In terms of the average heldout entropy

of the models, the DNNs were consistently more confident in their predictions (lower entropy) than

the kernels. Significantly, we observe that the best development set TER results for our DNN and

kernel models are quite comparable; on Cantonese and TIMIT, the kernel models outperform the

DNNs by 0.4% absolute, on Broadcast News the kernels exactly match the DNNs, while on Bengali

the DNNs do better by 0.1%.

We will now discuss the results on the test sets. First of all, in order to avoid overfitting to the

test sets, for each dataset we only performed test set evaluations for the DNN and kernel models

which performed best in terms of the development set TER. The final row of Table 5.3 thus contains

all the test results we collected.4 As one can see, the relative performance of the DNN and kernel

models is quite similar to the development set results; the DNNs perform slightly better (0.1%) on

Bengali, and the kernels perform better on the rest, winning by 0.1% on Broadcast News, 0.5%

on Cantonese, and 0.1% on TIMIT. For direct comparison on the TIMIT dataset, we include in

Table 5.4 the test results for the best DNN and kernel models from [Huang et al., 2014] and [Chen

et al., 2016]. As mentioned in Section 4.2, we use the same features, labels, data set partitions

(train/heldout/dev/test), and decoding script as these papers, and thus our results are directly com-

4The only exception for this is on Broadcast News. We had already evaluated the best model using 100k random

features before we decided to train models with more random features (Table 5.2). Thus, in Table 5.3, we report the result

for the 400k Laplacian model, which attained a TER of 11.6%, whereas the 100k Laplacian model attained a TER of

11.9% on the test set.

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 63

Beng. (D/K) BN-50 (D/K) Cant. (D/K) TIMIT (D/K)

CE 1.243 / 1.256 2.001 / 2.004 1.916 / 1.883 1.056 / 0.9182

ENT 0.9079 / 1.082 1.274 / 1.434 1.375 / 1.516 0.447 / 0.5756

ERP 2.302 / 2.406 3.548 / 3.552 3.459 / 3.493 1.671 / 1.607

ERR 0.2887 / 0.2936 0.4887 / 0.4881 0.4353 / 0.4287 0.324 / 0.3085

TER (dev) 70.2 / 70.3 16.4 / 16.4 67.1 / 66.7 18.6 / 18.2

TER (test) 69.1 / 69.2 11.7 / 11.6 63.7 / 63.2 20.5 / 20.4

Table 5.3: Table comparing the Best DNN (‘D’) and kernel (‘K’) results, across 4 datasets and 6

metrics. The first 4 metrics are on the heldout set, the fifth is on the development set, and the last

metric is reported on the test set. For BN50, the large models from Table 5.2 are included in the set

of models from which the best performing model is picked (for each metric). See Section 4.2 for

metric definitions.

Test TER (DNN) Test TER (Kernel)

[Huang et al., 2014] 20.5 21.3

[Chen et al., 2016] N/A 20.9

This work 20.5 20.4

Table 5.4: Table comparing the Best DNN and kernel results from this work to those from [Huang

et al., 2014] and [Chen et al., 2016], on the TIMIT test set.

parable. We achieve a 0.9% absolute improvement in TER with our kernel model relative to [Huang

et al., 2014], and 0.5% improvement relative to [Chen et al., 2016]; furthermore, our best DNN

matches the performance of the best performing DNN from [Huang et al., 2014]. We believe the

most significant of these results is that the kernels (narrowly) beat the DNNs on Broadcast News,

our largest and most challenging dataset, and one which has been used extensively in large scale

speech recognition research.

In Appendix C, we include more detailed tables comparing the various models we trained across

these metrics. Some important things to take note of in those tables are as follows:

• The linear bottleneck typically causes a large drop in the average entropy of kernel models,

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 64

while not having as strong or consistent an effect on cross-entropy. For DNNs, the bottleneck

typically causes increases in cross-entropy, and relatively modest decreases in entropy.

• Using entropy regularized perplexity (ERP) to determine learning rate decay typically causes

increases in cross-entropy, and decreases in entropy, with the decrease in entropy typically

being larger than the increase in cross-entropy. As a result, the ERP is typically lower for

models that use this trick (with the exception of TIMIT DNN models).

• Feature selection typically results in large drops in cross-entropy, especially for Laplacian and

sparse Gaussian kernels, while its effect on entropy is quite small. It thus helps lower ERP

across the board, as well as TER in the vast majority of cases.

In Figure 5.1, we explore the performance of our three kernels, with and without feature selec-

tion, as we vary the number of random Fourier features D ∈ {5k, 10k, 25k, 50k, 100k} used for

training. As in Figure 4.2, we consider BN50 models which used heldout cross-entropy to determine

the learning rate decay. Once again, we see that increasing the number of features leads to stronger

performance, both in terms of cross-entropy and TER. Furthermore, the size of the gap between the

dashed and solid lines (representing experiments with and without feature selection, respectively),

indicates the importance of feature selection in attaining strong performance. This gap is very large

for the Laplacian kernel, modest for the Sparse Gaussian kernel, and relatively insignificant for the

Gaussian kernel. Across different values for D, without feature selection, the Sparse Gaussian ker-

nel typically does best; once feature selection is used, the Laplacian kernel and the sparse Gaussian

kernel perform similarly, beating the performance of the Gaussian kernel.

5.4 Analysis: Effects of random feature selection

We now explore the dynamics of the feature selection process. In our method, there is no guarantee

that a feature selected in one iteration will be selected in the next. In Figure 5.2, we plot the fraction

of the st features selected in iteration t that actually remain in the model after all T iterations. We

only show the results for Cantonese (models without linear bottleneck, and without using entropy

regularized log loss for LR decay), as the plots for other datasets are qualitatively similar. In nearly

all iterations and for all kernels, over half of the selected features survive to the final model. For

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 65

5 10 25 50 100
D / 1000

2

2.1

2.2

2.3

2.4
H

el
do

ut
 C

ro
ss

-E
nt

ro
py

Laplacian
Gaussian
Sparse-Gaussian

5 10 25 50 100
D / 1000

17

18

19

20

21

T
E

R
 (

%
)

Laplacian
Gaussian
Sparse-Gaussian

Figure 5.1: Performance of kernel acoustic models on BN50 dataset, as a function of the number of

random features D used. Results are reported in terms of heldout cross-entropy as well as develop-

ment set TER. Dashed lines signify that feature selection was performed, while solid lines mean it

was not. The color and shape of the markers indicate the kernel used.

instance, over 90% of the Laplacian kernel features selected at iteration 10 survive the remaining 40

rounds of selection. For comparison, we also plot the expected fraction of the st features selected

in iteration t that would survive until the end if the selected features in each iteration were chosen

uniformly at random from the pool. Since we use st = Dt/T , the expected fraction at iteration t is

T !/(t! · T T−t), which is exponentially small in T when t ≤ βT for any fixed β < 1.5 For example,

at t = 10 the expected survival rate is approximately 9× 10−11 with T = 50.

Finally, we consider how the random feature selection process can be regarded as selecting

non-linear combinations of input features. Consider the final matrix of random vectors Θ =

[θ(1), θ(2), . . . , θ(D)] ∈ Rd×D after random feature selection. A coarse measure of how much influ-

ence an input feature i ∈ {1, 2, . . . , d} has in the final feature map is the relative “weight” of the

i-th row of Θ. In Figure 5.3, we plot 1
Z

∑D
j=1 |Θi,j | for each input feature i ∈ {1, 2, . . . , d}. Here,

Z = 1
d

∑
i,j |Θi,j | is a normalization term.6 There is a strong periodic effect as a function of the

input feature number. The reason for this stems from the way the acoustic features are generated.

Recall that the features are the concatenation of nine 40-dimensional acoustic feature vectors cor-

5This can be shown using Stirling’s formula. See [Jameson, 2015] for a useful review.

6For the Laplacian kernel, we discard the largest element in each of the d rows of Θ, because there are sometimes

outliers which dominate the entire sum for their row.

CHAPTER 5. COMPACT KERNEL MODELS VIA RANDOM FEATURE SELECTION 66

Iteration t
0 10 20 30 40 50

S
u
rv

iv
a
l
ra

te

0.4

0.6

0.8

1

Laplacian + FS
Gaussian + FS
Gaussian-k + FS
Random

Figure 5.2: Fraction of the st features selected in iteration t that are in the final model (survival rate)

for Cantonese dataset.

Input feature number
0 100 200 300

R
e
la

ti
v
e
 w

e
ig

h
t

0

0.005

0.01

0.015 Laplacian + FS
Gaussian + FS
Gaussian-k + FS

Figure 5.3: The relative weight of each input feature in the random matrix Θ, for Cantonese dataset,

D = 50,000.

responding to nine audio frames. An examination of the feature pipeline from [Kingsbury et al.,

2013] reveals that these 40 features are ordered by a measure of discriminative quality (via linear

discriminant analysis). Thus, it is expected that the features with low (i− 1) mod 40 value may be

more useful than the others; indeed, this is evident in the plot. Note that this effect exists, but is

extremely weak, with the Gaussian kernel. We believe this is because Gaussian random vectors in

Rd are likely to have all their entries be bounded in magnitude by O(
√

log(d)).

5.5 Conclusion

In this chapter, we have presented a novel feature selection algorithm, which scales effectively

to problems with millions of points and thousands of labels. We have additionally introduced a

sparse Gaussian kernel, which works well in conjunction with the feature selection algorithm, and

generally attains our strongest results. We showed that using these methods, we are able to perform

on par with fully-connected feedforward DNNs across four acoustic modeling tasks. This is the

first time that kernel approximation methods have been shown to be competitive with deep learning

methods in a large scale domain in which DNNs are known to dominate.

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 67

Chapter 6

Nyström method vs. random Fourier

features

In this chapter, we study the relative merits of the random Fourier features (RFF) method [Rahimi

and Recht, 2007] and the Nyström method [Williams and Seeger, 2001], in terms of kernel approxi-

mation error, efficiency, and classification accuracy. We describe experiments on eight datasets that

show the following phenomena: (1) The Nyström method gives much better kernel approximation

error than random Fourier features, given the same number of features. At first glance this would

suggest that Nyström features are preferable. (2) The computational overhead for Nyström, both in

terms of computation time and in terms of memory, relative to RFF, results in the kernel approxima-

tion performance gap between the two methods shrinking considerably when a fixed computational

budget is used for the two methods. (3) Perhaps most strikingly, the superior kernel approximation

performance of the Nyström method does not directly translate to improved classification perfor-

mance. Specifically, we observe that an RFF model will perform significantly better than a Nyström

model with comparable average kernel approximation error, or comparable memory requirements.

This final point leads us to study how Nyström and RFF methods differ in the nature of their

kernel approximation errors. Our finding, supported by both empirical and theoretical results, is

that the Nyström method is much noisier at approximating the kernel value between points with

large kernel value, and in fact systematically underestimates kernel values between these points.

Given that training points of high kernel value with a data point have disproportionate influence on

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 68

the output of a model, our work suggests that these errors are particularly costly, leading to inferior

classification performance for the Nyström method.

This chapter is organized as follows: In Section 6.1 we review some important mathematical

properties of the Nyström method. In Section 6.2 we discuss our extensive experiments, across eight

datasets, comparing these two methods. We then discuss a number of theoretical results about the

Nyström representations in Section 6.3, which further elucidate the important differences between

them and random Fourier features. We conclude in Section 6.4.

6.1 Review of Nyström method properties

In this section, we review the fact that the Nyström method can be understood as a projection

onto a subspace of the Reproducing Kernel Hilbert Space (RKHS) H, and discuss some important

implications of this fact. For a more complete mathematical presentation of this material, including

proofs, please see Appendix D. Some related results are presented in Section 10.2 of Schölkopf and

Smola [2002].

Claim 1. Let ϕ(x) ∈ H denote the element in the RKHS H corresponding to a point x ∈ X . The

Nyström representation z(x) for x, given the set of landmark points {x̂1, . . . , x̂m}, corresponds to

the projection of ϕ(x) onto the subspace A = span(ϕ(x̂1), . . . , ϕ(x̂m)) ⊂ H.

This result allows us to understand at a more fundamental level how the Nyström method is

approximating the kernel; it is projecting the (possibly) infinite dimensional feature representation

ϕ(x) ∈ H onto a subspace of the RKHS. Specifically, the subspace onto which all points are

projected is the subspace in H spanned by the landmark points’ representations. This suggests

that for some points this projection will be a faithful representation, while for others it will not be.

Specifically, points x for which ϕ(x) is close to the subspace A should be well represented by their

Nyström features, while points for which ϕ(x) is far from A will not be. We make this more formal

in the corollaries below:

Corollary 1.1. Let A⊥ denote the orthogonal complement to A in H, and let ϕB(x) denote the

projection of ϕ(x) onto B, for B ∈ {A,A⊥}. Then the error made by the Nyström method in

predicting k(x, y) can be written as follows:

k(x, y)− 〈z(x), z(y)〉 = 〈ϕA⊥(x), ϕA⊥(y)〉H

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 69

Corollary 1.2. ‖z(x)‖2 ≤ k(x, x).

Corollary 1.3. Ifϕ(x) ∈ A, then the Nyström method makes 0 error approximating k(x, y)∀y ∈ X .

In Corollary 1.1, we show that the error made by Nyström in approximating the kernel between

two points is precisely equal to the dot-product between the components of those points orthogonal

to the subspace A. Because Nyström is performing a projection, this implies that for all points x,

the norm of z(x) will be no larger than the norm of ϕ(x); this means that the Nyström method will

always underestimate the value of k(x, x) = ‖ϕ(x)‖2H, which is what we show in Corollary 1.2.

Lastly, Corollary 1.3 says that for any point x such that ϕ(x) ∈ A, the Nyström representation for

x will perfectly approximate the kernel between x and all other points. In particular, this guarantees

that for a landmark point x̂i, the Nyström method will perfectly approximate k(x̂i, x) for any x ∈ X .

We include proofs of Claim 1 and each of these corollaries in Appendix D.

6.2 Experiments

In this section, we compare the performance of random Fourier features and Nyström features,

along a number of metrics, including kernel approximation error, efficiency, and performance on

classification and regression tasks, on eight datasets. We show that while the Nyström method does

perform much better in terms of kernel approximation error for a fixed number of features, this does

not translate directly into an equally large gap in classification and regression performance. We go

on to argue that this discrepancy can be explained by the important differences in the ways these

two methods make approximation errors.

6.2.1 Task and dataset details

For this work, we present experiments on various regression and classification tasks, summarized

in Table 6.1. For all datasets besides TIMIT, we pre-processed the features and labels as follows:

We normalized all continuous features to have zero mean and unit variance. We did not normalize

the binary features in any way. For regression datasets, we normalized the labels to have zero

mean across the training set. For more details on the datasets, see Appendix D.1. Notably, one of

our datasets is the TIMIT dataset, which is quite a challenging and large-scale dataset relative to

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 70

Dataset Task Train Heldout Test #Attr.

ADULT Class. (2) 29k 3k 16k 123

COD-RNA Class. (2) 54k 6k 272k 8

COVTYPE Class. (2) 418k 46k 116k 54

FOREST Class. (2) 470k 52k 58k 54

TIMIT Class. (147) 2.3M 245k 116k 440

CENSUS Reg. 16k 2k 2k 119

CPU Reg. 6k 0.7k 0.8k 21

YEARPRED Reg. 417k 46k 52k 90

Table 6.1: Dataset details. For classification tasks, we write the number of classes in parentheses in

the “task” column.

the datasets on which these methods have been compared before. For all experiments, we use the

Gaussian kernel, which corresponds to k(x, y) = exp(
−‖x−y‖22

2σ2).

6.2.2 Train details

For the binary classification tasks we train logistic regression models on top of either Nyström

features or random Fourier features, using stochastic gradient descent (SGD). For the TIMIT dataset,

which is a multi-class problem, we train multinomial logistic regression models. For the regression

tasks, we train our models using SGD to minimize the least squares loss. We train all our models

with mini-batches of size 250, and use GPUs on AWS EC2 machines for fast training (instance type

p2.xlarge).

For all datasets, we tune the initial learning rate, as well as the kernel bandwidth, on the held-

out set. We use the exact same kernel bandwidth and initial learning rate across all our models; in

particular, Nyström and RFF models use the same hyperparameters. Using the same hyperparam-

eters makes the trained models directly comparable. We use the same learning rate decay scheme

described in Section 4.3.

For the Nyström models, we choose the landmark points either randomly from the training set,

or using the k-means algorithm, as proposed by Zhang et al. [2008]. The k-means algorithm has

been shown to be a particularly effective method for picking the landmark points, and was shown

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 71

to be the best landmark selection algorithm among the ones compared in [Kumar et al., 2012].

We train Nyström models with the number of features D ∈ {1250, 2500, 5000, 10000, 20000},

and we train RFF models with D ∈ {1250, 2500, 5000, 10000, 20000, 50000, 100000, 200000,

400000, 800000, 1600000}. We repeat these experiments 10 times for Nyström experiments with

D ≤ 2500, and for RFF experiments with D ≤ 20000, initializing the landmark points and RFF

projection matrix randomly for each experiment. Note that for the TIMIT dataset we do not train

models with D = 1,600,000 due to the larger computational expense and memory requirements.

Additionally, for Nyström experiments, if D is ever greater than the number of training points, we

do not run the experiment. In the plots for these experiments, we show the minimum, median, and

maximum values for a given experiment across its 10 random initializations.

Note that the reason we are able to train RFF models with many more features than for the

Nyström method is because of the much larger memory requirements for the Nyström method.

Specifically, to compute D features over d dimensional data, the Nyström method requires O(Dd+

D2), while RFF only require O(dD), as discussed in Section 2.3.2. This assumes that for Nyström,

the number of landmark points m is equal to D, which is the setting we use for all our experiments.

For further details on training and hyperparameter choices, please see see Appendix D.2.

6.2.3 Results

In this section, we show how the Nyström method compares with random Fourier features, both

in terms of kernel approximation error, and in terms of regression and classification performance.

For clarify of presentation, we typically only show results on TIMIT, Forest, and YearPred, which

correspond to our two largest classification tasks, and our largest regression task. We include results

for the other datasets in Appendix D.3.

6.2.3.1 Kernel Approximation Error

In Figure 6.1, we show the mean squared kernel approximation error (MSE) of our various Nyström

and RFF models, measured on a large number of random pairs of heldout points. Specifically, we

show the average value of (k(x, y) − z(x)T z(y))2 for random x, y in the heldout set, where z(x)

can be either Nyström or RFF features.

We visualize these kernel approximation results in two ways. In the top of Figure 6.1, the

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 72

x-axis denotes the number of features used in each model, while the y-axis shows the correspond-

ing MSE. In the bottom plots, we instead show the kernel approximation error as a function of

the memory required for each feature representation. Note that this is equal to dD + D2 float-

ing point numbers for Nyström, while it is equal to dD floats for RFF (to compute D features of

d-dimensional data). The amount of memory used to compute a Nyström or RFF feature repre-

sentation is very significant for at least three reasons: (1) it is roughly proportional to the amount

of time it takes to compute the features, and to train a model with these features, (2) it determines

how large a model one can train given the memory limitations of whatever hardware is being used,

and (3) it lower bounds the memory footprint of any application using this model. Importantly,

Nyström features are much more memory intensive than RFF, because they involve the multipli-

cation with a very large matrix after computing the pairwise kernel values with all the landmark

points. Furthermore, the memory (and computation time) requirements for computing the RFF fea-

tures can be reduced quite significantly using structured matrix multiplications [Le et al., 2013;

Yu et al., 2015], while the memory reductions are less extreme for methods that reduce the memory

requirements of the Nyström method [Si et al., 2014; Kumar et al., 2009].

As you can see in Figure 6.1, for a fixed number of features, the Nyström method generally

attains a much lower approximation error. Even when accounting for the increased memory required

by the Nyström method (for a fixed number of features), it typically does better than RFF for a fixed

amount of memory. However, for most of our datasets, the largest RFF models match and sometimes

even surpass the kernel approximation performance of the Nyström models of equal size.

Interestingly, in many cases, the rate at which the RFF method’s kernel approximation error

decreases as its memory usage increases is greater than the Nyström method. This allows the RFF

models to “catch up” to the performance of the Nyström models as the sizes of the models get larger.

In order to help interpret the above kernel approximation results, in Figure 6.2, we include plots

of the normalized eigenvalues of the exact kernel matrices constructed from N = 20k random

training points. As one can see, for all the datasets the largest eigenvalues are significantly larger

than the others, though there is a long tail of non-negligible eigenvalues.

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 73

103 104 105 106

Number of Features

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

TIMIT

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

FOREST

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

YEARPRED

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

TIMIT

RFF

Nyström

Nyström K-means

104 106 108 1010

Memory Requirement (# floats)

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

FOREST

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

YEARPRED

RFF

Nyström

Nyström K-means

Figure 6.1: Kernel approximation errors for the Nyström method vs. random Fourier features, in

terms of the total numbers of features (top) and the total memory requirement (bottom) in the respec-

tive models. Error is measured as mean squared error on the heldout set. For Nyström experiments

with D ≤ 2500, and RFF experiments with D ≤ 20000, we run the experiments 10 times, and

report the median, with error bars indicating the minimum and maximum. Note that due to small

variance, error bars are often not clearly visible.

0.2N 0.4N 0.6N 0.8N N
10-8

10-6

10-4

10-2

100

E
ig

en
va

lu
es

/N

TIMIT

0.2N 0.4N 0.6N 0.8N N
10-10

10-8

10-6

10-4

10-2

100

E
ig

en
va

lu
es

/N

FOREST

0.2N 0.4N 0.6N 0.8N N
10-10

10-8

10-6

10-4

10-2

100

E
ig

en
va

lu
es

/N

YEARPRED

Figure 6.2: Spectrum of kernel matrices generated from N = 20k random training points.

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 74

103 104 105 106

Number of Features

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

10-6 10-5 10-4 10-3

Mean Squared Approximation Error

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

104 106 108 1010

Memory Requirement (# floats)

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

10-7 10-6 10-5 10-4 10-3

Mean Squared Approximation Error

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

10-7 10-6 10-5 10-4 10-3

Mean Squared Approximation Error

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

Figure 6.3: Heldout classification or regression performance for the Nyström method vs. random

Fourier features, in terms of the total numbers of features (left), total memory requirement (middle),

and kernel approximation error (right) of the corresponding models. For Nyström experiments with

D ≤ 2500, and RFF experiments with D ≤ 20000, we run the experiments 10 times, and report the

median performance, with error bars indicating the minimum and maximum. Note that due to small

variance, error bars are often not clearly visible.

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 75

6.2.3.2 Classification Performance

We now examine the classification performance of models trained using the Nyström and RFF fea-

tures discussed above. In Figure 6.3, we show RFF and Nyström heldout classification or regression

performance for all the models we trained. We see that for a fixed number of features, the Nyström

method generally does better. However, the performance gap between these methods narrows for

large numbers of features, and at 20,000 features they generally attain very similar performance.

Furthermore, because random Fourier features require significantly less memory and are cheaper

to compute than Nyström features, we can train models with very large numbers of features (up to

1,600,000), and these large RFF models outperform the best Nyström models we are able to train.

In the middle column of plots in Figure 6.3, we see that for a given amount of memory, the RFF

models perform better than the Nyström models. This suggests that for a fixed memory or time

budget, it is advisable to use RFF features instead of Nyström features. In the rightmost plots, we

plot the mean squared kernel approximation error of each model (x-axis), and the corresponding

heldout performance of the model (y-axis). Here we see that for a fixed mean squared kernel ap-

proximation error, random Fourier features perform much better than Nyström features. This result

was quite surprising for us; we had imagined that two sets of features with similar approximation

errors would perform very similarly in terms of classification performance when they were used to

train models. However, this is definitely not the case with respect to Nyström features and random

Fourier features. This surprising fact led us to perform a thorough analysis of the ways in which

Nyström features and random Fourier features differ in the way they make approximation errors.

This is what we investigate in the following section.

6.2.3.3 Kernel Approximation Error: A Second Look

In this section, we explore how the Nyström method and random Fourier features differ in the

way they make approximation errors. In Figure 6.4, we show the histogram of errors for Nyström

features and random Fourier features which have similar mean squared approximation errors on the

TIMIT heldout set (1250 Nyström features have a MSE of 4.07×10−05, while 20,000 RFF features

have a MSE of 4.79× 10−05). To be precise, we show the histogram of k(x, y)− z(x)T z(y) values

for a large number of random pairs of points in the heldout set. We show two different histograms

for each method, corresponding to different ranges for the true value of k(x, y). In the left plot, we

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 76

Figure 6.4: Histograms of kernel approximation errors for Nyström features random Fourier fea-

tures. The different histograms correspond to a partition of the k(x, y) − z(x)T z(y) values based

on the values of k(x, y). Note that the Nyström method has many outliers for k(x, y) ≥ 0.25, some

of which are truncated from the histogram.

Figure 6.5: Histograms of the feature vector norms for Nyström (left) and RFF (right), for various

numbers of features. Note that for the RBF kernel, k(x, x) = 1 ∀x ∈ X , so a feature vector z(x) of

norm close to 1 approximates this self-similarity measure well.

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 77

Method Metric k(x, y) ≤ 0.25 k(x, y) ≥ 0.25 Global

Nyström MSE 1.58× 10−5 4.78× 10−4 4.07× 10−5

RFF MSE 4.82× 10−5 4.22× 10−5 4.79× 10−5

Nyström Bias −1.15× 10−5 7.59× 10−3 3.97× 10−4

RFF Bias −5.94× 10−4 −1.54× 10−3 −6.45× 10−4

Nyström Variance 1.58× 10−5 4.20× 10−4 9.23× 10−5

RFF Variance 4.79× 10−5 3.98× 10−5 4.83× 10−5

Table 6.2: MSE, Bias, and Variance of kernel approximation errors k(x, y)−z(x)T z(y) for Nyström

(m = 1250), and RFF (m = 20000) features, estimated using many random pairs of points in the

TIMIT heldout set. We partition these pairs of points (x, y) based on whether the true kernel value

k(x, y) is greater than or less than 0.25.

see that when the true kernel value is small (k(x, y) ≤ 0.25), the Nyström method generally attains

smaller errors, as can be seen by the larger number of points in the bin corresponding to errors in

the range [−.005, .005]; note that while this effect appears quite small in the logarithmic scale plot,

it is significant, corresponding to 91% vs. 53% of the data in this center bin for Nyström and RFF

respectively. However, the Nyström method has more outliers than RFF does, with approximately

0.14% of the data having error greater than 0.035, while RFF has no outliers of this magnitude. The

RFF distribution appears to be symmetric around 0, while the Nyström distribution is assymetric,

with more outliers on the positive side than the negative side. In the right plot, we see that when

the true kernel value is larger (k(x, y) ≥ 0.25), the histogram of Nyström errors has much larger

variance, and also shifts to the right (note also that this histogram is truncated on the right, as

Nyström has some outliers beyond this range). In particular, approximately 6.6% of the data has

error greater than 0.035. This shift indicates that the Nyström method has a positive bias in this

range of k(x, y) values, meaning that the Nyström features are typically underestimating k(x, y)

when k(x, y) ≥ 0.25. The errors of the random Fourier features, in contrast, are always centered

around zero. In Table 6.2, we show the MSE for both methods for the true kernel value ranges

discussed above, and we also decompose the MSE into bias and variance (MSE = Bias2 + V ar).

As you can see, the Nyström method has large variance, and positive bias, for k(x, y) ≥ 0.25.

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 78

As we have seen, the Nyström method does poorly on points that are close in the input space

(i.e., have high kernel value). The point closest to any point is itself, so in Figure 6.5 we examine the

histograms of ‖z(x)‖2 values, which relate to the kernel approximation error at k(x, x) as follows:

‖z(x)‖2 = k(x, x) − (k(x, x) − z(x)T z(x)), where in our setting k(x, x) = 1 ∀x ∈ X . As can

be seen in the left plot, the norms of the Nyström features are spread widely across the [0, 1] range

(shifting toward 1 for larger numbers of features m), whereas the norms of the RFF features are

centered tightly around 1, indicating small error at approximating k(x, x).

We now consider whether there is a way to penalize kernel approximation errors in such a way

that the average penalty would correlate better with the heldout performance of the model. We have

seen that the mean squared kernel approximation error is not a good metric for predicting heldout

performance, given that RFF models generally perform better than Nyström models with similar

kernel approximation MSE; viewed differently, this is equivalent to stating that for Nyström and

RFF models which perform similarly in terms of heldout performance, the Nyström models have

lower kernel approximation MSE. We have also seen that the Nyström method makes many more

large kernel approximation errors than RFF does. This leads us to consider approximation penalties

of the form |k(x, y)−z(x)T z(y)|r. This metric penalizes an error which is twice as big (in absolute

value) 2r times more. Thus, intuitively, for large values of r, the Nyström method will have many

points on which it is penalized highly, thus bringing its average penalty closer to that of an RFF

model with similar heldout performance. In Figure 6.6, we plot the heldout performance of our

different models in terms of the kernel approximation error, for several values of r. As you can see,

for each dataset there is a value of r for which the lines corresponding to the Nyström and RFF

models overlap (for TIMIT and Forest, r = 3.5; for YearPred, r = 5.5). This suggests that large

kernel approximation errors have a much larger negative effect on the performance of the trained

model than smaller ones do (an error which is twice as big seems to “cost” 23.5 or 25.5 times as

much as the smaller error), and that perhaps these large errors cause the Nyström models to not

perform as well as the RFF models.

It is important to note that the bound on the approximation error of random Fourier features

which we presented in Equation 2.6, can be easily modified to bound the probability that |k(x, y)−

z(x)T z(y)|r ≥ ε:

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 79

10-8 10-6 10-4 10-2

r = 2.5

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6

r = 5.5

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

10-8 10-6 10-4 10-2

r = 2.5

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 5.5

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

10-8 10-6 10-4 10-2

r = 2.5

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6

r = 5.5

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

Figure 6.6: Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the average kernel approximation errors, measured as |k(x, y) −

z(x)T z(y)|r for r ∈ {2.5, 3.5, 5.5}. Note that due to numeric underflow, some of the models with

lowest approximation error sometimes do not appear in the r = 5.5 plots.

Pω,b
[
|z(x)T z(y)− k(x, y)|r ≥ ε

]
≤ 2 exp

(−Dε2/r
8

)
. (6.1)

6.3 Nyström method error analysis

In this section, we explore theoretically the question of why Nyström features have larger variance

and positive bias when k(x, y) is bigger, as well as the question of why the Nyström vectors have

norms distributed in the fashion described above. For the full proofs of all the theorems presented

in this section, as well as for short “proof sketches”, please see Appendix D.

We begin with a theorem that states that if a Nyström representation z(x) has small norm, then

there exists an open ball around x ∈ X such that Nyström underestimates k(x, y) for any y in this

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 80

ball.

Theorem 4. Given a kernel function k : X ×X → R which is Ĉ-Lipschitz continuous in each of its

arguments, let C = supx,y
|k(x,x)−k(x,y)|
‖x−y‖2 ≤ Ĉ, and let zr(x) = Σ

−1/2
r UTr kx be the rank-r Nyström

approximation, using m landmark points {x̂1, . . . , x̂m}. Let K̂ be the m by m kernel matrix of the

landmark points (K̂ij = k(x̂i, x̂j)), and let λr denote the rth biggest eigenvalue of K̂. Then for any

ε > 0, and any x, y ∈ X satisfying

‖x− y‖2 <
k(x, x)− ‖zr(x)‖2 − ε

C(λ−1r m+ 1)
,

it follows that k(x, y)− zr(x)T zr(y) > ε.

In what follows, we will use the notation introduced in Appendix D.4, letting H denote the

Reproducing Kernel Hilbert Space (RKHS) for a kernel function k, and letting ϕ(x) ∈ H denote the

element in the RKHS corresponding to a point x ∈ X . We will leverage Mercer’s Theorem, which

allows us to write any kernel function as k(x, y) =
∑N

j=1 λjej(x)ej(y). For further background,

see Appendix D.4.

We will now show that assuming a kernel function k(x, y) =
∑N

j=1 λjej(x)ej(y) has an infinite

spectrum (λj > 0 ∀j ∈ N) there must exist points x for which k(x, x) − ‖z(x)‖2 > 0, and thus,

by Theorem 4, open sets around those points on which Nyström underestimates k(x, y). In order to

prove this, we will use the following definition for a centered kernel. Letting µ = EX [ϕ(X)] ∈ H,

we define the centered kernel kc(x, y) = 〈ϕ(x)− µ, ϕ(y)− µ〉 ≡ 〈ϕc(x), ϕc(y)〉. It follows that

EX [ϕc(x)] = 0, and that this kc is a proper positive definite kernel, as it is defined as the dot-product

in a Hilbert Space. Thus, by Mercer’s theorem, it can be written as

kc(x, y) =
Nc∑

j=1

λcje
c
j(x)ecj(y),

where Nc ≤ ∞ and all λcj are strictly positive. Furthermore, because the (centered) covariance

operator forϕc(X) is equal to the (uncentered) covariance operator ofϕ(X) minus µµT , the number

of non-zero eigenvalues N c decreases by at most 1 relative to N (and thus N c is infinite if N is

infinite). We now proceed with Theorem 2.

Theorem 5. For k(x, y) =
∑N

j=1 λjφj(x)φj(y), and its corresponding centered kernel kc(x, y) =
∑Nc

j=1 λ
c
jφ
c
j(x)φcj(y), the expected error made by any m-dimensional Nyström approximation z(x)

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 81

(for any m ≤ N) in approximating k(x, x) satisfies

EX
[
k(X,X)− ‖z(X)‖2

]
≥

Nc∑

j=m+1

λcj ,

regardless of the choice of landmark points.

One immediate consequence of the above theorem is that EX
[
‖z(X)‖2

]
≤ EX [k(X,X)] −

∑Nc

j=m+1 λ
c
j . Thus, EX

[
‖z(X)‖2

]
is strictly less than EX [k(X,X)], which means that the Nyström

method produces biased estimates of k(x, x). We note that this result is in sharp contrast to random

Fourier features, which produced unbiased estimates of k(x, y) for all x, y ∈ X .

Corollary 5.1. For a Nyström mapping zm : X → Rm using m landmark points, approximating a

kernel k with centered spectrum (λci)
N
i=1, there must exist x ∈ X such that

k(x, x)− ‖zm(x)‖2 ≥
Nc∑

j=m+1

λcj

Proof. This follows directly from the previous theorem, because in order for the expectation of

k(X,X) − ‖zm(X)‖2 to be greater than or equal to
∑Nc

j=m+1 λ
c
j , there must exist a point x ∈ X

such that k(x, x)− ‖zm(x)‖2 ≥
∑Nc

j=m+1 λ
c
j .

In the next theorem we lower bound the probability that the Nyström method with m landmark

points underestimates k(x, x) by more than ε. We prove this in the context of bounded kernels

k(x, y) ∈ [a, b], and we will assume without loss of generality that k(x, y) ∈ [0, 1].

Theorem 6. For a bounded kernel k(x, y) =
∑N

j=1 λjφj(x)φj(y) ∈ [0, 1], and any Nyström

approximation z(x) with m landmark points (for m ≤ N), the following holds:

PX
[
k(X,X)− ‖z(X)‖2 ≥ ε

]
≥ 1− exp

(
− 2
(
Rm − ε

)2)
,

for Rm =
∑N

j=m+1 λ
c
j , and 0 ≤ ε ≤ Rm. If we further restrict ε ≤ Rm/2, it immediately follows

that

PX
[
k(X,X)− ‖z(X)‖2 ≥ ε

]
≥ 1− exp

(
−R2

m/2
)
.

CHAPTER 6. NYSTRÖM METHOD VS. RANDOM FOURIER FEATURES 82

This proof (see Appendix D) involves a straightforward application of Hoeffding’s inequality

to the result of Theorem 2, letting the random variable under question be f(X) = k(X,X) −

‖z(X)‖2 ∈ [0, 1].

We now show that not only is the Nyström method biased in estimating k(x, x), it is in general

biased in its estimation of k(x, y) for random pairs of x, y ∈ X .

Theorem 7. Let µ = EX [ϕ(X)] be the average element in the RKHS H corresponding to the

kernel k, where X is drawn from a probability distribution p over the input space X . Let A =

span(ϕ(x̂1), . . . , ϕ(x̂m)) be the m-dimensional subspace of H corresponding to landmark points

{x̂1, . . . , x̂m} ⊂ X . Additionally, let z(x) be the Nyström representation corresponding to these

landmark points, let A⊥ denote the orthogonal complement of A in H, and let µ = µA + µA⊥ ,

where µA ∈ A and µA⊥ ∈ A⊥. Then

EX,Y
[
k(X,Y)− z(X)T z(Y)

]
= ‖µA⊥‖2,

where this expectation is over X and Y drawn independently from p.

Thus, µ ∈ A implies EX,Y
[
k(X,Y)− z(X)T z(Y)

]
= 0, and µ /∈ A implies

EX,Y
[
k(X,Y)− z(X)T z(Y)

]
> 0. So the Nyström method is biased when µ /∈ A, underestimat-

ing the true kernel value in expectation.

6.4 Conclusion

In this chapter, we explored from both empirical and theoretical perspectives, the differences be-

tween random Fourier features and Nyström features. We found that they differ significantly in

their distributions of approximation errors, and argued that these differences lead to the Nyström

method performing poorly on classification and regression tasks, in spite of its low average kernel

approximation errors. We further showed that random Fourier features outperform Nyström features

in classification and regression performance under a fixed computational budget, and quite surpris-

ingly, that random Fourier features outperform Nyström features with similar mean approximation

error. We believe that together, these contributions shed light on important questions at the heart of

kernel approximation methods.

CHAPTER 7. CONCLUSION 83

Chapter 7

Conclusion

Kernel approximation methods have several attractive qualities: (1) Training is a convex optimiza-

tion problem, and many of the convergence and generalization bounds from the kernel literature

can be adapted to the approximation setting. (2) They are relatively straightforward to interpret: In

particular, they are like a smoothed version of a k-nearest neighbor classifier.

In this thesis, we have demonstrated the viability of kernel approximation methods for large-

scale multi-class classification problems. Specifically, we have shown that the random Fourier fea-

tures method of Rahimi and Recht can compete with fully-connected feedforward neural networks

on the acoustic modeling task for speech recognition. We have proposed a new feature selection

method, which is able to quickly search through large numbers of features to find those best suited

for the task. We have introduced a new sparse kernel, the sparse Gaussian kernel, which can be more

efficient to approximate, and generally performs better than (or on par with) the Gaussian and Lapla-

cian kernels, regardless of whether or not feature selection is performed. These methods, together

with the linear bottleneck method of Sainath et al. [2013a], and using entropy regularized perplexity

for learning rate decay [Lu et al., 2016], brought the performance of the kernel methods on par with

that of the DNNs. This is the first time that it has been demonstrated, in a very large-scale setting

where deep learning techniques have been known to dominate, that kernel approximation methods

can effectively compete with fully-connected feedforward neural networks.

In addition to these contributions, we have uncovered an important fact about kernel approxima-

tion methods—namely, that the specific types of approximation errors made by these methods have

an important effect on the performance of the models trained with these features. In particular, two

CHAPTER 7. CONCLUSION 84

sets of features with the same mean squared kernel approximation error can yield models with very

different performance. Along these lines, we found that the Nyström method sometimes largely

underestimates the true value of the kernel, while the random Fourier features method never makes

large mistakes. Thus, even though the Nyström method attains impressively low kernel approxima-

tion errors for a fixed number of features, the random Fourier features method performs better than

it under a fixed computational budget.

We believe that these contributions demonstrate the potential of kernel approximation methods

on challenging large scale tasks. We now discuss some areas for future research which we believe

to be promising.

7.1 Future work

For future work, we propose to:

1. Develop “recurrent” and “convolutional” kernels, which take advantage of the temporal and/or

spatial structure of an input in order to attain better performance, and put these to the test on

challenging large-scale tasks (e.g., computer vision, speech recognition, NLP). We believe

specialized kernels, which leverage the structure of the input, will be important for compet-

ing with CNNs and LSTMs, which are currently the state of the art methods in a number of

domains.

2. Test kernel methods in other domains in order to see to what extent the results presented in

this thesis generalize.

3. Leverage the shallow structure of kernel models in order to develop highly efficient parallel

implementations for training kernel models, as well as for evaluating kernel models. Thus,

even if a model is quite large, it could be very fast to evaluate in parallel. This could help

mitigate the fact that sometimes a very large number of features is required to attain strong

performance.

4. Analyze, in the case of the linear bottleneck with the cross-entropy objective, whether all

local minima are also global minimizers. Similar results have been shown in the context of

matrix sensing, matrix completion, and robust PCA [Ge et al., 2016; Ge et al., 2017].

CHAPTER 7. CONCLUSION 85

5. Determine if there are any formal guarantees which can be proven about our feature selection

method.

6. Formalize the way in which the larger kernel approximation errors made by the Nyström

method affect the performance of the models trained using Nyström features.

7. Use approximation methods to efficiently learn the optimal dual parameters1 for large-scale

kernel models. This could lead to improved performance, and also allow whoever is deploying

the model to tune the level of approximation they are willing to tolerate, in order to evaluate

the model more quickly.2

8. Develop more interpretable kernel models. While in theory kernel models are easy to inter-

pret, this interpretability can be clouded by things like: (1) The high-dimensionality of the

problem (hard to visualize points in high-dimensions, or understand what it really means for

two points to be near each other in this space, especially when the features themselves are

somewhat opaque). (2) The fact that these models are approximate kernel models. (3) The

fact that to save space, we generally do not store the α values (f(x) =
∑N

i=1 αik(xi, x)),

which in a sense explain exactly what the model is doing. Furthermore, even if we did store

the α values, it would be difficult to make sense of them, given the very large number of

training examples and classes. A couple avenues which could help improve interpretability

are: (1) storing the α parameters, (2) learning models with sparse α coefficients, and (3)

developing kernel functions which are easier to visualize in high-dimensions.

9. Recent work has shown that deep neural networks do more than simply memorize the training

set; rather, they learn simple patterns first, and then learn the more difficult training examples

[Arpit et al., 2017]. Do kernel methods do something similar?

10. It is an open question whether there are inherent limitations to kernel methods, as suggested,

for example, by Bengio and Lecun [2007]. Are “template matching methods” doomed to fail

1The dual parameters are the α parameters in the kernel model f(x) =
∑N
i=1 αik(xi, x)

2For example, they can take f(x) = 〈wD, zD(x)〉, where zD(x) is the D-dimensional random Fourier feature repre-

sentation for x ∈ X , and where wD =
∑N
i=1 αizD(xi) ∈ RD .

CHAPTER 7. CONCLUSION 86

in the very high-dimensional setting, due to the very large3 number of training points which

would be necessary to “cover” this space? Or are there simple kernels which are well-suited

for these very high dimensional settings (e.g., images)? Along a similar vein, are DNNs

really doing something very different than “template matching”, or are they actually template

matching algorithms in disguise?

We believe that there are many open questions regarding the limits of kernel methods, and their

performance relative to DNNs. We are excited to continue pushing the boundaries of what is known

in this area.

3Exponential in the dimension of the data, for example.

BIBLIOGRAPHY 87

Bibliography

[Agarwal et al., 2017] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu

Ma. Finding approximate local minima faster than gradient descent. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 1195–1199, New

York, NY, USA, 2017. ACM.

[Anandkumar and Ge, 2016] Animashree Anandkumar and Rong Ge. Efficient approaches for es-

caping higher order saddle points in non-convex optimization. In Proceedings of the 29th Con-

ference on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 81–102,

2016.

[Andor et al., 2016] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro

Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-

based neural networks. In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers,

2016.

[Aronszajn, 1950] N. Aronszajn. Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68(3):337–404, 1950.

[Arpit et al., 2017] Devansh Arpit, Stanislaw K. Jastrzebski, Nicolas Ballas, David Krueger, Em-

manuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua

Bengio, and Simon Lacoste-Julien. A closer look at memorization in deep networks. In Pro-

ceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,

Australia, 6-11 August 2017, pages 233–242, 2017.

BIBLIOGRAPHY 88

[Ba and Caruana, 2014] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Ad-

vances in Neural Information Processing Systems 27: Annual Conference on Neural Information

Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2654–2662,

2014.

[Bahl et al., 1986] L. Bahl, P. Brown, P. de Souza, and R. Mercer. Maximum mutual information

estimation of hidden Markov model parameters for speech recognition. In Acoustics, Speech,

and Signal Processing, IEEE International Conference on ICASSP ’86., volume 11, pages 49–

52, Apr 1986.

[Bartlett et al., 2002] Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Localized

Rademacher complexities. In Proceedings of the 15th Annual Conference on Computational

Learning Theory, COLT ’02, pages 44–58, London, UK, UK, 2002. Springer-Verlag.

[Bartlett, 1996] Peter L. Bartlett. For valid generalization the size of the weights is more important

than the size of the network. In Advances in Neural Information Processing Systems 9, NIPS,

Denver, CO, USA, December 2-5, 1996, pages 134–140, 1996.

[Bengio and Lecun, 2007] Yoshua Bengio and Yann Lecun. Scaling learning algorithms towards

ai, 2007.

[Berlinet and Thomas-Agnan, 2003] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel

Hilbert Spaces in Probability and Statistics. Springer US, 2003.

[Bianchini and Scarselli, 2014] Monica Bianchini and Franco Scarselli. On the complexity of neu-

ral network classifiers: A comparison between shallow and deep architectures. IEEE Trans.

Neural Netw. Learning Syst., 25(8):1553–1565, 2014.

[Bottou et al., 2007] Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston, editors.

Large Scale Kernel Machines. MIT Press, Cambridge, MA., 2007.

[Chen et al., 2016] Jie Chen, Lingfei Wu, Kartik Audhkhasi, Brian Kingsbury, and Bhuvana Ram-

abhadrari. Efficient one-vs-one kernel ridge regression for speech recognition. In 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai,

China, March 20-25, 2016, pages 2454–2458, 2016.

BIBLIOGRAPHY 89

[Choromanska et al., 2015] Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben

Arous, and Yann LeCun. The loss surfaces of multilayer networks. In Proceedings of the

Eighteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2015, San

Diego, California, USA, May 9-12, 2015, 2015.

[Clarkson, 2010] Kenneth L. Clarkson. Coresets, Sparse Greedy Approximation, and the Frank-

Wolfe Algorithm. ACM Trans. Algorithms, 6(4):63:1–63:30, 2010.

[Cybenko, 1989] George Cybenko. Approximation by superpositions of a sigmoidal function.

MCSS, 2(4):303–314, 1989.

[Dai et al., 2014] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, and

Le Song. Scalable kernel methods via doubly stochastic gradients. In Zoubin Ghahramani, Max

Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems 27: Annual Conference on Neural Information Processing

Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3041–3049, 2014.

[Dasgupta and McAllester, 2013] Sanjoy Dasgupta and David McAllester, editors. Proceedings of

the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21

June 2013, volume 28 of JMLR Workshop and Conference Proceedings. JMLR.org, 2013.

[Dauphin et al., 2014] Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, KyungHyun Cho,

Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization. In Advances in Neural Information Processing Systems

27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014,

Montreal, Quebec, Canada, pages 2933–2941, 2014.

[DeCoste and Schölkopf, 2002] Dennis DeCoste and Bernhard Schölkopf. Training Invariant Sup-

port Vector Machines. Mach. Learn., 46:161–190, 2002.

[Dehak et al., 2011] Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and Pierre

Ouellet. Front-end factor analysis for speaker verification. IEEE Trans. Audio, Speech & Lan-

guage Processing, 19(4):788–798, 2011.

BIBLIOGRAPHY 90

[Dempster et al., 1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY,

SERIES B, 39(1):1–38, 1977.

[Duchi and Singer, 2009] John C. Duchi and Yoram Singer. Efficient online and batch learning

using forward backward splitting. Journal of Machine Learning Research, 10:2899–2934, 2009.

[Gales and Young, 2007] Mark Gales and Steve Young. The application of hidden Markov models

in speech recognition. Found. Trends Signal Process., 1(3):195–304, January 2007.

[Gales, 1998] M.J.F. Gales. Maximum likelihood linear transformations for HMM-based speech

recognition. Computer Speech & Language, 12(2):75 – 98, 1998.

[Garofolo et al., 1993] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and

N. L. Dahlgren. DARPA TIMIT acoustic phonetic continuous speech corpus CDROM, 1993.

[Ge et al., 2016] Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local

minimum. In Advances in Neural Information Processing Systems 29: Annual Conference on

Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages

2973–2981, 2016.

[Ge et al., 2017] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank

problems: A unified geometric analysis. In Proceedings of the 34th International Conference on

Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 1233–1242,

2017.

[Gibson and Hain, 2006] Matthew Gibson and Thomas Hain. Hypothesis spaces for minimum

Bayes risk training in large vocabulary speech recognition. In INTERSPEECH 2006 - ICSLP,

Ninth International Conference on Spoken Language Processing, Pittsburgh, PA, USA, Septem-

ber 17-21, 2006. ISCA, 2006.

[Gittens and Mahoney, 2013] Alex Gittens and Michael W. Mahoney. Revisiting the Nyström

method for improved large-scale machine learning. In Proceedings of the 30th International

Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 567–

575, 2013.

BIBLIOGRAPHY 91

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of train-

ing deep feedforward neural networks. In Yee Whye Teh and D. Mike Titterington, editors,

Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,

AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, volume 9 of JMLR Pro-

ceedings, pages 249–256. JMLR.org, 2010.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.

MIT Press, 2016. http://www.deeplearningbook.org.

[Graves et al., 2006] Alex Graves, Santiago Fernández, Faustino J. Gomez, and Jürgen Schmidhu-

ber. Connectionist temporal classification: labelling unsegmented sequence data with recurrent

neural networks. In Machine Learning, Proceedings of the Twenty-Third International Confer-

ence (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, pages 369–376, 2006.

[Guenter et al., 2013] Brian Guenter, Dong Yu, Adam Eversole, Oleksii Kuchaiev, and Mike

Seltzer. Stochastic gradient descent algorithm in the computational network toolkit. Decem-

ber 2013.

[Halko et al., 2011] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure

with randomness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Review, 53(2):217–288, 2011.

[Hamid et al., 2014] Raffay Hamid, Ying Xiao, Alex Gittens, and Dennis DeCoste. Compact ran-

dom feature maps. In Xing and Jebara [2014], pages 19–27.

[Han et al., 2015] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and

connections for efficient neural network. In Advances in Neural Information Processing Systems,

pages 1135–1143, 2015.

[Härdle et al., 2004] Wolfgang Karl Härdle, Marlene Müller, Stefan Sperlich, and Axel Werwatz.

Nonparametric and semiparametric models. Springer Science & Business Media, 2004.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778, 2016.

http://www.deeplearningbook.org

BIBLIOGRAPHY 92

[Hinton et al., 2006] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning

algorithm for deep belief nets. Neural Computation, 18(7):1527–1554, 2006.

[Hinton et al., 2012] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mo-

hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,

and Brian Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The

shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Computation, 9(8):1735–1780, 1997.

[Hornik et al., 1989] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feed-

forward networks are universal approximators. Neural Networks, 2(5):359–366, 1989.

[Huang et al., 2014] Po-Sen Huang, Haim Avron, Tara N. Sainath, Vikas Sindhwani, and Bhuvana

Ramabhadran. Kernel methods match deep neural networks on TIMIT. In IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP 2014, Florence, Italy, May 4-9,

2014, pages 205–209. IEEE, 2014.

[Hwang et al., 1993] M. Y. Hwang, X. Huang, and F. Alleva. Predicting unseen triphones with

senones. In 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing,

volume 2, pages 311–314 vol.2, April 1993.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In Francis R. Bach and David M.

Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, ICML

2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings,

pages 448–456. JMLR.org, 2015.

[Jameson, 2015] G. J. O. Jameson. A simple proof of Stirling’s formula for the gamma function.

99(544):68–74, March 2015.

[Kaiser et al., 2000] Janez Kaiser, Bogomir Horvat, and Zdravko Kacic. A novel loss function

for the overall risk criterion based discriminative training of HMM models. In Sixth Interna-

BIBLIOGRAPHY 93

tional Conference on Spoken Language Processing, ICSLP 2000 / INTERSPEECH 2000, Beijing,

China, October 16-20, 2000, pages 887–890. ISCA, 2000.

[Kar and Karnick, 2012] Purushottam Kar and Harish Karnick. Random feature maps for dot prod-

uct kernels. In Neil D. Lawrence and Mark A. Girolami, editors, Proceedings of the Fifteenth

International Conference on Artificial Intelligence and Statistics, AISTATS 2012, La Palma, Ca-

nary Islands, April 21-23, 2012, volume 22 of JMLR Proceedings, pages 583–591. JMLR.org,

2012.

[Kingsbury et al., 2013] B. Kingsbury, J. Cui, X. Cui, M. J. F. Gales, K. Knill, J. Mamou, L. Mangu,

D. Nolden, M. Picheny, B. Ramabhadran, R. Schlüter, A. Sethy, and P. C. Woodland. A High-

performance Cantonese Keyword Search System. In Proc. ICASSP, pages 8277–8281, 2013.

[Kingsbury, 2009] Brian Kingsbury. Lattice-based optimization of sequence classification criteria

for neural-network acoustic modeling. In Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing, ICASSP 2009, 19-24 April 2009, Taipei, Taiwan,

pages 3761–3764. IEEE, 2009.

[Kiperwasser and Goldberg, 2016] Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate

dependency parsing using bidirectional LSTM feature representations. TACL, 4:313–327, 2016.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Clas-

sification with Deep Convolutional Neural Networks. In Pereira et al. [2012], pages 1097–1105.

[Kumar et al., 2009] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Ensemble Nyström

method. In Y. Bengio, D. Schuurmans, J.D. Lafferty, C.K.I. Williams, and A. Culotta, editors,

Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural

Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Van-

couver, British Columbia, Canada., pages 1060–1068, 2009.

[Kumar et al., 2012] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods for

the Nyström method. Journal of Machine Learning Research, 13:981–1006, 2012.

[Le et al., 2013] Quoc V. Le, Tamás Sarlós, and Alexander J. Smola. Fastfood – approximating

kernel expansions in loglinear time. In Dasgupta and McAllester [2013], pages 244–252.

BIBLIOGRAPHY 94

[Le Roux et al., 2012] Nicolas Le Roux, Mark W. Schmidt, and Francis R. Bach. A stochastic

gradient method with an exponential convergence rate for finite training sets. In Pereira et al.

[2012], pages 2672–2680.

[Lu et al., 2016] Zhiyun Lu, Dong Quo, Alireza Bagheri Garakani, Kuan Liu, Avner May, Aurélien

Bellet, Linxi Fan, Michael Collins, Brian Kingsbury, Michael Picheny, and Fei Sha. A compari-

son between deep neural nets and kernel acoustic models for speech recognition. In 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai,

China, March 20-25, 2016, pages 5070–5074. IEEE, 2016.

[May et al., 2016] Avner May, Michael Collins, Daniel J. Hsu, and Brian Kingsbury. Compact

kernel models for acoustic modeling via random feature selection. In 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China, March

20-25, 2016, pages 2424–2428. IEEE, 2016.

[May et al., 2017] Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan Liu,

Aurélien Bellet, Linxi Fan, Michael Collins, Daniel J. Hsu, Brian Kingsbury, Michael Picheny,

and Fei Sha. Kernel approximation methods for speech recognition. CoRR, abs/1701.03577,

2017.

[mer, 1909] Xvi. functions of positive and negative type, and their connection the theory of integral

equations. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 209(441-458):415–446, 1909.

[Micchelli et al., 2006] Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal ker-

nels. Journal of Machine Learning Research, 6:2651–2667, 2006.

[Mikolov et al., 2010] Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev

Khudanpur. Recurrent neural network based language model. In INTERSPEECH 2010, 11th

Annual Conference of the International Speech Communication Association, Makuhari, Chiba,

Japan, September 26-30, 2010, pages 1045–1048, 2010.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient esti-

mation of word representations in vector space. In ICLR Workshop, 2013.

BIBLIOGRAPHY 95

[Mohamed et al., 2012] Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton. Acoustic

Modeling Using Deep Belief Networks. IEEE Transactions on Audio, Speech, and Language

Processing, 20(1):14–22, 2012.

[Mohri et al., 2002] Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state

transducers in speech recognition. Computer Speech & Language, 16(1):69–88, 2002.

[Montúfar et al., 2014] Guido F. Montúfar, Razvan Pascanu, KyungHyun Cho, and Yoshua Bengio.

On the number of linear regions of deep neural networks. In Corinna Cortes, Neil Lawrence, and

Kilian Weinberger, editors, Advances in Neural Information Processing Systems 27: Annual

Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 2924–2932, 2014.

[Morgan and Bourlard, 1990] N. Morgan and H. Bourlard. Generalization and parameter estima-

tion in feedforward nets: Some experiments. In Advances in Neural Information Processing

Systems 2, 1990.

[Morgan and Bourlard, 1995] N. Morgan and H. A. Bourlard. Neural networks for statistical recog-

nition of continuous speech. Proceedings of the IEEE, 83(5):742–772, May 1995.

[Neyshabur et al., 2015] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the

real inductive bias: On the role of implicit regularization in deep learning. In International

Conference on Learning Representations, 2015.

[Pennington and Bahri, 2017] Jeffrey Pennington and Yasaman Bahri. Geometry of neural network

loss surfaces via random matrix theory. In Proceedings of the 34th International Conference on

Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 2798–2806,

2017.

[Pennington et al., 2015] Jeffrey Pennington, Felix X. Yu, and Sanjiv Kumar. Spherical random

features for polynomial kernels. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi

Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems

28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,

Montreal, Quebec, Canada, pages 1846–1854, 2015.

BIBLIOGRAPHY 96

[Pereira et al., 2012] F. Pereira, C.J.C. Burges, L. Bottou, and K. Q. Weinberger, editors. Advances

in Neural Information Processing Systems 25, 2012.

[Platt, 1998] John C. Platt. Fast Training of Support Vector Machines using Sequential Minimal

Optimization. In Advances in Kernel Methods - Support Vector Learning. MIT Press, 1998.

[Povey and Kingsbury, 2007] Daniel Povey and Brian Kingsbury. Evaluation of proposed modifi-

cations to MPE for large scale discriminative training. In Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, ICASSP 2007, Honolulu, Hawaii, USA,

April 15-20, 2007, pages 321–324. IEEE, 2007.

[Povey and Woodland, 2002] D. Povey and P. C. Woodland. Minimum phone error and i-smoothing

for improved discriminative training. In Acoustics, Speech, and Signal Processing (ICASSP),

2002 IEEE International Conference on, volume 1, pages I–105–I–108, May 2002.

[Povey et al., 2008] Daniel Povey, Dimitri Kanevsky, Brian Kingsbury, Bhuvana Ramabhadran,

George Saon, and Karthik Visweswariah. Boosted MMI for model and feature-space discrimi-

native training. In Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing, ICASSP 2008, March 30 - April 4, 2008, Caesars Palace, Las Vegas, Nevada,

USA, pages 4057–4060, 2008.

[Povey et al., 2016] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahrmani, Vimal

Manohar, Xingyu Na, Yiming Wang, and Sanjeev Khudanpur. Purely sequence-trained neural

networks for asr based on lattice-free mmi. In Interspeech, 2016.

[Rahimi and Recht, 2007] Ali Rahimi and Benjamin Recht. Random features for large-scale ker-

nel machines. In Advances in Neural Information Processing Systems 20, Proceedings of the

Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British

Columbia, Canada, December 3-6, 2007, pages 1177–1184, 2007.

[Rahimi and Recht, 2008] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen

sinks: Replacing minimization with randomization in learning. In Advances in Neural Informa-

tion Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural

Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11, 2008,

pages 1313–1320, 2008.

BIBLIOGRAPHY 97

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Inter-

national Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[Sainath et al., 2011] T.N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak, and

A. Mohamed. Making deep belief networks effective for large vocabulary continuous speech

recognition. In Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Work-

shop on, pages 30–35. IEEE, 2011.

[Sainath et al., 2013a] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arısoy, and Bhu-

vana Ramabhadran. Low-rank Matrix Factorization for Deep Neural Network Training with

High-dimensional Output Targets. In Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on, pages 6655–6659. IEEE, 2013.

[Sainath et al., 2013b] Tara N. Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhuvana

Ramabhadran. Deep convolutional neural networks for LVCSR. In IEEE International Confer-

ence on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May

26-31, 2013, pages 8614–8618, 2013.

[Sainath et al., 2013c] T.N. Sainath, B. Kingsbury, H. Soltau, and B. Ramabhadran. Optimization

techniques to improve training speed of deep neural networks for large speech tasks. Audio,

Speech, and Language Processing, IEEE Transactions on, 21(11):2267–2276, Nov 2013.

[Sak et al., 2014] Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term mem-

ory recurrent neural network architectures for large scale acoustic modeling. In INTERSPEECH

2014, 15th Annual Conference of the International Speech Communication Association, Singa-

pore, September 14-18, 2014, pages 338–342, 2014.

[Saon et al., 2016] George Saon, Tom Sercu, Steven J. Rennie, and Hong-Kwang Jeff Kuo. The

IBM 2016 english conversational telephone speech recognition system. In Interspeech 2016, 17th

Annual Conference of the International Speech Communication Association, San Francisco, CA,

USA, September 8-12, 2016, pages 7–11, 2016.

BIBLIOGRAPHY 98

[Saon et al., 2017] George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas,

Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim,

Bergul Roomi, and Phil Hall. English conversational telephone speech recognition by humans

and machines. In Interspeech 2017, 18th Annual Conference of the International Speech Com-

munication Association, Stockholm, Sweden, August 20-24, 2017, 2017.

[Schölkopf and Smola, 2002] Bernhard Schölkopf and Alexander Johannes Smola. Learning with

Kernels: support vector machines, regularization, optimization, and beyond. Adaptive computa-

tion and machine learning series. MIT Press, 2002.

[Schölkopf et al., 2001] Bernhard Schölkopf, Ralf Herbrich, and Alexander J. Smola. A gener-

alized representer theorem. In Computational Learning Theory, 14th Annual Conference on

Computational Learning Theory, COLT 2001 and 5th European Conference on Computational

Learning Theory, EuroCOLT 2001, Amsterdam, The Netherlands, July 16-19, 2001, Proceed-

ings, pages 416–426, 2001.

[Seide et al., 2011a] Frank Seide, Gang Li, Xie Chen, and Dong Yu. Feature engineering in

context-dependent deep neural networks for conversational speech transcription. In David Na-

hamoo and Michael Picheny, editors, 2011 IEEE Workshop on Automatic Speech Recognition &

Understanding, ASRU 2011, Waikoloa, HI, USA, December 11-15, 2011, pages 24–29. IEEE,

2011.

[Seide et al., 2011b] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription us-

ing context-dependent deep neural networks. In INTERSPEECH 2011, 12th Annual Conference

of the International Speech Communication Association, Florence, Italy, August 27-31, 2011,

pages 437–440. ISCA, 2011.

[Sejdinovic and Gretton, 2012] Dino Sejdinovic and Arthur Gretton. What is an RKHS? http:

//www.gatsby.ucl.ac.uk/˜gretton/coursefiles/RKHS_Notes1.pdf, 2012.

[Online; accessed 27-October-2017].

[Sercu and Goel, 2016] Tom Sercu and Vaibhava Goel. Advances in very deep convolutional neural

networks for LVCSR. In Interspeech 2016, 17th Annual Conference of the International Speech

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/RKHS_Notes1.pdf
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/RKHS_Notes1.pdf

BIBLIOGRAPHY 99

Communication Association, San Francisco, CA, USA, September 8-12, 2016, pages 3429–3433,

2016.

[Si et al., 2014] Si Si, Cho-Jui Hsieh, and Inderjit S. Dhillon. Memory efficient kernel approxima-

tion. In Xing and Jebara [2014], pages 701–709.

[Simonyan and Zisserman, 2014] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[Smola, 2014] Alex Smola. Personal communication, 2014.

[Soltau et al., 2014] Hagen Soltau, George Saon, and Tara N. Sainath. Joint training of convolu-

tional and non-convolutional neural networks. In IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2014, Florence, Italy, May 4-9, 2014, pages 5572–5576,

2014.

[Sonnenburg and Franc, 2010] Sören Sonnenburg and Vojtech Franc. COFFIN: A computational

framework for linear svms. In Johannes Fürnkranz and Thorsten Joachims, editors, Proceedings

of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,

Israel, pages 999–1006. Omnipress, 2010.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[Steinwart, 2004] I. Steinwart. Sparseness of support vector machines—some asymptotically sharp

bounds. In Advances in Neural Information Processing Systems 16, 2004.

[Ström, 1997] Nikko Ström. Sparse connection and pruning in large dynamic artificial neural

networks. In Fifth European Conference on Speech Communication and Technology, EU-

ROSPEECH 1997, Rhodes, Greece, September 22-25, 1997, 1997.

[Sundermeyer et al., 2012] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural

networks for language modeling. In INTERSPEECH 2012, 13th Annual Conference of the In-

ternational Speech Communication Association, Portland, Oregon, USA, September 9-13, 2012,

pages 194–197, 2012.

BIBLIOGRAPHY 100

[Sutskever et al., 2013] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton.

On the importance of initialization and momentum in deep learning. In Dasgupta and McAllester

[2013], pages 1139–1147.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learn-

ing with neural networks. In Advances in Neural Information Processing Systems 27: Annual

Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 3104–3112, 2014.

[Tsang et al., 2005] Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core Vector Machines:

Fast SVM Training on Very Large Data Sets. Journal of Machine Learning Research, 6:363–392,

2005.

[Valtchev et al., 1997] V Valtchev, J.J Odell, P.C Woodland, and S.J Young. MMIE training of

large vocabulary recognition systems. Speech Communication, 22(4):303 – 314, 1997.

[van den Berg et al., 2017] Ewout van den Berg, Bhuvana Ramabhadran, and Michael Picheny.

Training variance and performance evaluation of neural networks in speech. In 2017 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans,

LA, USA, March 5-9, 2017, pages 2287–2291, 2017.

[Vasilache et al., 2015] Nicolas Vasilache, Jeff Johnson, Michaël Mathieu, Soumith Chintala,

Serkan Piantino, and Yann LeCun. Fast convolutional nets with fbfft: A GPU performance

evaluation. In Proceedings of the 3rd International Conference on Learning Representations,

San Diage, CA, USA, May 7-9, 2015, 2015.

[Vedaldi and Zisserman, 2012] A. Vedaldi and A. Zisserman. Efficient Additive Kernels via Ex-

plicit Feature Maps. IEEE Trans. on Pattern Anal. & Mach. Intell., 34(3):480–492, 2012.

[Veselý et al., 2013] Karel Veselý, Arnab Ghoshal, Lukás Burget, and Daniel Povey. Sequence-

discriminative training of deep neural networks. In Frédéric Bimbot, Christophe Cerisara, Cécile

Fougeron, Guillaume Gravier, Lori Lamel, François Pellegrino, and Pascal Perrier, editors, IN-

TERSPEECH 2013, 14th Annual Conference of the International Speech Communication Asso-

ciation, Lyon, France, August 25-29, 2013, pages 2345–2349. ISCA, 2013.

BIBLIOGRAPHY 101

[Viterbi, 1967] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, April 1967.

[Williams and Seeger, 2001] C.K.I. Williams and M. Seeger. Using the Nyström method to speed

up kernel machines. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural

Information Processing Systems 13, pages 682–688. MIT Press, 2001.

[Xie et al., 2017] Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target

functions. In Proceedings of the 20th International Conference on Artificial Intelligence and

Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, pages 1216–1224, 2017.

[Xing and Jebara, 2014] Eric P. Xing and Tony Jebara, editors. Proceedings of the 31th Interna-

tional Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, vol-

ume 32 of JMLR Workshop and Conference Proceedings. JMLR.org, 2014.

[Xiong et al., 2016] W. Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, An-

dreas Stolcke, Dong Yu, and Geoffrey Zweig. Achieving human parity in conversational speech

recognition. CoRR, abs/1610.05256, 2016.

[Xiong et al., 2017] W. Xiong, L. Wu, F. Alleva, Jasha Droppo, X. Huang, and Andreas Stolcke.

The microsoft 2017 conversational speech recognition system. CoRR, abs/1708.06073, 2017.

[Xue et al., 2013] Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acous-

tic models with singular value decomposition. In INTERSPEECH 2013, 14th Annual Conference

of the International Speech Communication Association, Lyon, France, August 25-29, 2013,

pages 2365–2369, 2013.

[Yang et al., 2012] Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou.

Nyström method vs random fourier features: A theoretical and empirical comparison. In Pereira

et al. [2012], pages 485–493.

[Yang et al., 2015] Zichao Yang, Marcin Moczulski, Misha Denil, Nando de Freitas, Alexander J.

Smola, Le Song, and Ziyu Wang. Deep fried convnets. In 2015 IEEE International Conference

on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 1476–1483,

2015.

BIBLIOGRAPHY 102

[Yen et al., 2014] E.-H. Yen, T.-W. Lin, S.-D. Lin, P.K. Ravikumar, and I.S. Dhillon. Sparse ran-

dom feature algorithm as coordinate descent in Hilbert space. In Advances in Neural Information

Processing Systems 27, 2014.

[Young et al., 1994] S. J. Young, J. J. Odell, and P. C. Woodland. Tree-based state tying for high

accuracy acoustic modelling. In Proceedings of the Workshop on Human Language Technology,

HLT ’94, pages 307–312, Stroudsburg, PA, USA, 1994. Association for Computational Linguis-

tics.

[Yu et al., 2015] Felix X. Yu, Sanjiv Kumar, Henry A. Rowley, and Shih-Fu Chang. Compact

nonlinear maps and circulant extensions. CoRR, abs/1503.03893, 2015.

[Zhang et al., 2008] Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved Nyström low-

rank approximation and error analysis. In Machine Learning, Proceedings of the Twenty-Fifth

International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008, pages 1232–1239,

2008.

[Zhang et al., 2017] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning requires rethinking generalization. In Proceedings of the

5th International Conference on Learning Representations, Toulon, France, April 24-26, 2017,

2017.

103

Appendices

APPENDIX A. DEFINITIONS 104

Appendix A

Definitions

• Metric Space A metric space (X , d) is a setX together with a distance function d : X×X →

R satisfying:

1. d(x, x′) ≥ 0 ∀x, x′ ∈ X , with equality if and only if x = x′ (non-negative).

2. d(x, x′) = d(x′, x) (symmetric).

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

• Cauchy Sequence: A Cauchy sequence (x1, x2, . . .) is an infinite sequence of points xi in a

metric space (X , d), satisfying the following: For every ε > 0, there exists N ∈ N such that

for all m,n > N , d(xm, xn) < ε.

• Limit of a sequence: A point x in a metric space (X , d) is the limit of an infinite sequence

(x1, x2, . . .) if for every ε > 0, there exists N ∈ N such that for all n > N , d(x, xn) < ε.

• Complete Space: A metric space (X , d) is complete if every Cauchy sequence in X has a

limit, and the limit is in X .

• Normed Space: A normed vector space (X , ‖·‖) is a vector spaceX over the field F, together

with a norm function ‖ · ‖ : X → R. The norm function must satisfy (for all x, y ∈ X):

1. ‖x‖ ≥ 0, with ‖x‖ = 0 if and only if x = 0.

2. ‖αx‖ = |α|‖x‖, for any scalar α ∈ F

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

APPENDIX A. DEFINITIONS 105

• Inner Product Space: An inner product space (X , 〈·, ·〉) is a is a vector spaceX over the field

F, together with an inner product function 〈·, ·〉 : X × X → R. The inner product function

must satisfy (for all x, y, z ∈ X , and all α ∈ F):

1. 〈x, y〉 = 〈y, x〉 (conjugate symmetry).

2. 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉 (linearity in the first argument).

3. 〈x, x〉 ≥ 0, with equality if and only if x = 0 (positive-definiteness).

• Banach Space: A Banach space is a complete normed space.

• Hilbert Space: A Hilbert space is a complete inner product space; i.e., it is a Banach space

with an inner product.

• Isometric Isomorphism: An isometric isomorphism L : U → V between two inner product

spaces is a bijective linear map which preserves inner products—namely, for any u, u′ ∈ U ,

〈u, u′〉U = 〈L(u), L(u′)〉V .

• Positive semi-definite matrix: A symmetric matrix K ∈ RN×N is positive semi-definite if

cTKc ≥ 0 ∀c ∈ RN . This is equivalent to all of its eigenvalues being non-negative.

• Positive definite function: A symmetric function k : X × X → R is called positive definite

if for any c1, . . . , cN ∈ R, any x1, . . . , xN ∈ X , and any N ∈ N,
∑N

i,j=1 cicjk(xi, xj) ≥ 0.

APPENDIX B. DERIVATION FOR RANDOM FOURIER FEATURES 106

Appendix B

Derivation for random Fourier features

In this appendix, we will prove that for a properly-scaled (i.e., Z = 1) positive-definite shift-

invariant kernel k,

k(x, y) = Eω,b
[√

2 cos(ωTx+ b) ·
√

2 cos(ωT y + b)
]
, (B.1)

where ω is drawn from p(ω), the inverse Fourier transform of k, and b is drawn uniformly from

[0, 2π]. We begin this proof using Equation 2.5 from Section 2.3.1:

k(x, y) =

∫

Rd
p(ω)ejω

T (x−y) dω

= Eω
[
ejω

T xe−jω
T y
]

= Eω
[(

cos(ωTx) + j sin(ωTx)
)(

cos(ωT y)− j sin(ωT y)
)]

= Eω
[
cos(ωTx) cos(ωT y) + sin(ωTx) sin(ωT y)

]

+ j · Eω
[
sin(ωTx) cos(ωT y)− sin(ωT y) cos(ωTx)

]

= Eω
[
cos(ωTx) cos(ωT y) + sin(ωTx) sin(ωT y)

]
(B.2)

Note the Equation B.2 is true because we know that k(x, y) is a real-valued function, and thus the

imaginary part of the expectation must disappear. We now show that the right-hand side of Equation

APPENDIX B. DERIVATION FOR RANDOM FOURIER FEATURES 107

B.1 is equal to this same expression:

Eω,b
[√

2 cos(ωTx+ b) ·
√

2 cos(ωT y + b)
]

= 2 · Eω,b
[(

cos(ωTx) cos(b)− sin(ωTx) sin(b)

)
·

(
cos(ωT y) cos(b)− sin(ωT y) sin(b)

)]
(B.3)

= 2 · Eω,b
[

cos(ωTx) cos(ωT y) cos2(b)

− cos(ωTx) sin(ωT y) cos(b) sin(b)

− sin(ωTx) cos(ωT y) cos(b) sin(b)

+ sin(ωTx) sin(ωT y) sin2(b)

]

= 2 · Eω
[

1

2
cos(ωTx) cos(ωT y) +

1

2
sin(ωTx) sin(ωT y)

]
(B.4)

= Eω
[
cos(ωTx) cos(ωT y) + sin(ωTx) sin(ωT y)

]

= k(x, y)

Equation B.3 is true by the cosine sum of angles formula, and Equation B.4 is true because Eb
[
cos2(b)

]
=

Eb
[
sin2(b)

]
=
∫ 2π
0

1
2π sin2(b) = 1

2 , and because Eb [sin(b) cos(b)] = 0. This concludes the proof.

APPENDIX C. DETAILED RESULTS 108

Appendix C

Detailed results

C.1 Results from Section 4

In this section, we include tables comparing the models we trained in terms of 4 different metrics

(CE, ENT, ERR, and ERP). The notation is the same as in Tables 4.3 and 4.4. For both DNN and

kernel models, ‘NT’ specifies that no tricks were used during training (no bottleneck, no special

learning rate decay). A ‘B’ specifies that a linear bottleneck was used for the output matrix, while

an ‘R’ specifies that entropy regularized perplexity was used for learning rate decay.

1000 2000 4000

NT B R BR NT B R BR NT B R BR

Beng. 1.25 1.26 1.24 1.27 1.24 1.26 1.26 1.32 1.24 1.25 1.30 1.39

BN-50 2.05 2.05 2.04 2.08 2.01 2.04 2.05 2.22 2.00 2.03 2.09 2.27

Cant. 1.92 1.96 1.92 1.98 1.93 1.94 1.97 2.06 1.92 1.97 2.03 2.10

TIMIT 1.06 1.08 1.20 1.28 1.08 1.09 1.25 1.31 1.10 1.11 1.25 1.33

Table C.1: DNN: Metric CE

APPENDIX C. DETAILED RESULTS 109

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 1.34 1.32 1.35 1.39 1.35 1.33 1.36 1.34 1.31 1.29 1.34 1.33

BN-50 N/A 2.15 N/A 2.43 N/A 2.05 N/A 2.16 N/A 2.05 N/A 2.19

Cant. 1.93 1.95 1.95 2.04 1.99 1.98 2.00 2.04 1.93 1.94 1.95 2.00

TIMIT 0.97 0.99 0.97 1.07 0.94 0.96 0.94 1.02 0.94 0.95 0.94 1.03

Table C.2: Kernel: Metric CE

1000 2000 4000

NT B R BR NT B R BR NT B R BR

Beng. 1.23 1.17 1.18 1.09 1.18 1.13 1.09 0.99 1.14 1.11 1.02 0.91

BN-50 1.95 1.77 1.90 1.68 1.76 1.68 1.65 1.40 1.65 1.60 1.48 1.27

Cant. 1.71 1.67 1.67 1.57 1.66 1.64 1.55 1.42 1.63 1.55 1.43 1.38

TIMIT 0.72 0.70 0.58 0.53 0.63 0.63 0.50 0.48 0.57 0.57 0.48 0.45

Table C.3: DNN: Metric ENT

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 1.43 1.23 1.41 1.08 1.36 1.31 1.35 1.28 1.35 1.23 1.30 1.10

BN-50 N/A 1.89 N/A 1.46 N/A 1.83 N/A 1.53 N/A 1.81 N/A 1.48

Cant. 1.84 1.67 1.76 1.52 1.94 1.73 1.91 1.58 1.77 1.69 1.70 1.55

TIMIT 0.95 0.72 0.91 0.61 0.88 0.73 0.86 0.62 0.89 0.76 0.85 0.61

Table C.4: Kernel: Metric ENT

APPENDIX C. DETAILED RESULTS 110

1000 2000 4000

NT B R BR NT B R BR NT B R BR

Beng. 2.48 2.43 2.43 2.37 2.42 2.39 2.35 2.31 2.39 2.37 2.32 2.30

BN-50 3.99 3.82 3.94 3.76 3.77 3.72 3.70 3.63 3.65 3.63 3.58 3.55

Cant. 3.63 3.63 3.58 3.56 3.59 3.58 3.51 3.48 3.55 3.52 3.46 3.47

TIMIT 1.77 1.77 1.77 1.81 1.71 1.72 1.76 1.79 1.67 1.68 1.73 1.78

Table C.5: DNN: Metric ERP

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 2.77 2.55 2.76 2.47 2.71 2.65 2.71 2.62 2.67 2.52 2.64 2.44

BN-50 N/A 4.04 N/A 3.88 N/A 3.88 N/A 3.69 N/A 3.86 N/A 3.67

Cant. 3.77 3.62 3.71 3.56 3.94 3.71 3.91 3.62 3.71 3.63 3.65 3.54

TIMIT 1.92 1.71 1.87 1.68 1.82 1.70 1.80 1.65 1.83 1.71 1.79 1.64

Table C.6: Kernel: Metric ERP

1000 2000 4000

NT B R BR NT B R BR NT B R BR

Beng. 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.30 0.29 0.29 0.29 0.30

BN-50 0.50 0.50 0.50 0.50 0.49 0.50 0.50 0.51 0.49 0.49 0.50 0.51

Cant. 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

TIMIT 0.33 0.33 0.34 0.34 0.33 0.33 0.34 0.34 0.33 0.32 0.33 0.33

Table C.7: DNN: Metric ERR

APPENDIX C. DETAILED RESULTS 111

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.30 0.30 0.30 0.30

BN-50 N/A 0.52 N/A 0.54 N/A 0.50 N/A 0.51 N/A 0.50 N/A 0.51

Cant. 0.43 0.44 0.44 0.44 0.45 0.45 0.45 0.45 0.43 0.44 0.44 0.44

TIMIT 0.32 0.32 0.32 0.33 0.31 0.32 0.31 0.32 0.31 0.31 0.31 0.32

Table C.8: Kernel: Metric ERR

C.2 Results from Section 5

In this section, we include tables comparing the kernel models we trained in terms of 4 different

metrics (CE, ENT, ERR, and ERP). The notation is the same as Table 5.1. ‘NT’ specifies that no

tricks were used during training (no bottleneck, no feature selection, no special learning rate decay).

A ‘B’ specifies that a linear bottleneck was used for the output matrix, while an ‘R’ specifies that

ERP was used for learning rate decay (‘BR’ means both were used). ‘+FS’ specifies that feature

selection was used for the experiments in that row.

APPENDIX C. DETAILED RESULTS 112

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 1.34 1.32 1.35 1.39 1.35 1.33 1.36 1.34 1.31 1.29 1.34 1.33

+FS 1.28 1.26 1.29 1.27 1.35 1.31 1.36 1.35 1.28 1.26 1.31 1.27

BN-50 N/A 2.15 N/A 2.43 N/A 2.05 N/A 2.16 N/A 2.05 N/A 2.19

+FS N/A 2.01 N/A 2.07 N/A 2.04 N/A 2.13 N/A 2.00 N/A 2.06

Cant. 1.93 1.95 1.95 2.04 1.99 1.98 2.00 2.04 1.93 1.94 1.95 2.00

+FS 1.88 1.90 1.89 1.95 1.97 1.97 1.98 2.03 1.90 1.91 1.91 1.96

TIMIT 0.97 0.99 0.97 1.07 0.94 0.96 0.94 1.02 0.94 0.95 0.94 1.03

+FS 0.92 0.95 0.92 1.03 0.93 0.96 0.93 1.02 0.92 0.96 0.92 1.03

Table C.9: Kernel: Metric CE

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 1.43 1.23 1.41 1.08 1.36 1.31 1.35 1.28 1.35 1.23 1.30 1.10

+FS 1.32 1.21 1.28 1.14 1.44 1.27 1.45 1.13 1.32 1.22 1.26 1.14

BN-50 N/A 1.89 N/A 1.46 N/A 1.83 N/A 1.53 N/A 1.81 N/A 1.48

+FS N/A 1.81 N/A 1.56 N/A 1.84 N/A 1.55 N/A 1.80 N/A 1.57

Cant. 1.84 1.67 1.76 1.52 1.94 1.73 1.91 1.58 1.77 1.69 1.70 1.55

+FS 1.75 1.66 1.73 1.54 1.91 1.72 1.87 1.57 1.75 1.68 1.72 1.54

TIMIT 0.95 0.72 0.91 0.61 0.88 0.73 0.86 0.62 0.89 0.76 0.85 0.61

+FS 0.86 0.70 0.82 0.58 0.86 0.70 0.83 0.61 0.84 0.69 0.82 0.58

Table C.10: Kernel: Metric ENT

APPENDIX C. DETAILED RESULTS 113

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 2.77 2.55 2.76 2.47 2.71 2.65 2.71 2.62 2.67 2.52 2.64 2.44

+FS 2.60 2.47 2.57 2.41 2.79 2.58 2.80 2.48 2.60 2.48 2.57 2.41

BN-50 N/A 4.04 N/A 3.88 N/A 3.88 N/A 3.69 N/A 3.86 N/A 3.67

+FS N/A 3.82 N/A 3.63 N/A 3.88 N/A 3.67 N/A 3.80 N/A 3.62

Cant. 3.77 3.62 3.71 3.56 3.94 3.71 3.91 3.62 3.71 3.63 3.65 3.54

+FS 3.63 3.56 3.63 3.49 3.88 3.69 3.86 3.60 3.64 3.58 3.63 3.50

TIMIT 1.92 1.71 1.87 1.68 1.82 1.70 1.80 1.65 1.83 1.71 1.79 1.64

+FS 1.78 1.65 1.74 1.61 1.79 1.67 1.76 1.64 1.76 1.64 1.74 1.61

Table C.11: Kernel: Metric ERP

Laplacian Gaussian Sparse Gaussian

NT B R BR NT B R BR NT B R BR

Beng. 0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.30 0.30 0.30 0.30

+FS 0.29 0.29 0.30 0.29 0.31 0.31 0.31 0.31 0.30 0.29 0.30 0.30

BN-50 N/A 0.52 N/A 0.54 N/A 0.50 N/A 0.51 N/A 0.50 N/A 0.51

+FS N/A 0.49 N/A 0.50 N/A 0.50 N/A 0.50 N/A 0.49 N/A 0.49

Cant. 0.43 0.44 0.44 0.44 0.45 0.45 0.45 0.45 0.43 0.44 0.44 0.44

+FS 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.45 0.43 0.44 0.43 0.44

TIMIT 0.32 0.32 0.32 0.33 0.31 0.32 0.31 0.32 0.31 0.31 0.31 0.32

+FS 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.31 0.31 0.31

Table C.12: Kernel: Metric ERR

APPENDIX D. NYSTRÖM APPENDIX 114

Appendix D

Nyström Appendix

D.1 Datasets

For the TIMIT dataset, we use the same exact training/heldout/dev/test sets as described in Section

4.2. We acquired the Cod-RNA, CovType (binary), and YearPred from the LIBSVM webpage,1 and

the Adult, Census, CPU, and Forest datasets from Ali Rahimi’s webpage.2 For these seven datasets,

we randomly set aside 10% of the training data as a heldout set for tuning the learning rate and

kernel bandwidth.

The specific files we used were as follows:

• Cod-RNA: We used “cod-rna” as training/heldout set, “cod-rna.t” file as test set.

• CovType: We randomly chose 20% of “covtype.libsvm.binary” as test, and used the rest for

training/heldout.

• YearPred: We used “YearPredictionMSD” as training/heldout set, and “YearPredictionMSD.t”

as test.

• For the Adult, Census, CPU, and Forest datasets which we downloaded from Ali Rahimi’s

webpage, we used the included matlab dataset files (adult.mat, census.mat, cpu.mat, for-

est.mat). These Matlab files each had already split the data into train and test. We used a

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

2https://keysduplicated.com/ ali/random-features/data/

APPENDIX D. NYSTRÖM APPENDIX 115

random 10% of the training data as heldout.

D.2 Hyperparameter Choices

We tune the initial learning rates, as well as the kernel bandwidths, on the heldout sets. In Table

D.1, we report for each dataset, the initial learning rate we use, as well as the kernel bandwidth

value (we report the value of 1/2σ2 which we use).

Dataset 1/2σ2 Initial LR

ADULT 0.1 100

COD-RNA 0.4 200

COVTYPE 0.6 10

FOREST 0.5 1000

TIMIT 0.0015 51.2

CENSUS 0.0006 1

CPU 0.03 10

YEARPRED 0.01 0.6

Table D.1: Hyperparameters used for all datasets

D.3 Results

In the main body of the paper, we only included results on TIMIT, Forest, and YearPred, for the

sake of clarity. We now include results for all eight of our datasets. In Figure D.1, we show the

kernel approximation performance for Nyström and RFF features as a function of the number of

features. In Figure D.2 we show kernel approximation performance as a function of total memory

requirement. In Figures D.3 and D.4, we show heldout classification or regression performance for

the Nyström method vs. random Fourier features, in terms of the total numbers of features (left),

total memory requirement (middle), and kernel approximation error (right) of the corresponding

models. For Nyström experiments with D ≤ 2500, and RFF experiments with D ≤ 20000, we

APPENDIX D. NYSTRÖM APPENDIX 116

103 104 105 106

Number of Features

10-8

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

ADULT

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-8

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

CODRNA

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

COVTYPE

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

FOREST

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

TIMIT

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-10

10-8

10-6

10-4

10-2

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

CENSUS

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-10

10-8

10-6

10-4

10-2

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

CPU

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

YEARPRED

RFF

Nyström

Nyström K-means

Figure D.1: Kernel approximation error, in terms of the number of features.

105 106 107 108 109

Memory Requirement (# floats)

10-8

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

ADULT

RFF

Nyström

Nyström K-means

104 106 108 1010

Memory Requirement (# floats)

10-8

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

CODRNA

RFF

Nyström

Nyström K-means

104 106 108 1010

Memory Requirement (# floats)

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

COVTYPE

RFF

Nyström

Nyström K-means

104 106 108 1010

Memory Requirement (# floats)

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

FOREST

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

TIMIT

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

10-10

10-8

10-6

10-4

10-2

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

CENSUS

RFF

Nyström

Nyström K-means

104 105 106 107 108

Memory Requirement (# floats)

10-10

10-8

10-6

10-4

10-2

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

CPU

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

10-7

10-6

10-5

10-4

10-3

H
el

do
ut

 A
pp

ro
x.

 E
rr

or
 (

M
S

E
)

YEARPRED

RFF

Nyström

Nyström K-means

Figure D.2: Kernel approximation error, in terms of the total memory requirement.

run the experiments 10 times, and report the median performance, with error bars indicating the

minimum and maximum. Note that due to small variance, error bars are often not clearly visible.

In Figure 6.2 we show the spectra for each dataset of a kernel matrix generated from 20k random

training points. In Figures D.6 and D.7, we show heldout classification or regression performance

for the Nyström method vs. random Fourier features, in terms of the average kernel approximation

error, as measured by |k(x, x′)− z(x)T z(x′)|r, for various values of r (r ∈ {2.5, 3.5, 5.5}).

APPENDIX D. NYSTRÖM APPENDIX 117

103 104 105 106

Number of Features

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

ADULT

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

ADULT

RFF

Nyström

Nyström K-means

10-8 10-6 10-4 10-2

Mean Squared Approximation Error

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

ADULT

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

CODRNA

RFF

Nyström

Nyström K-means

104 106 108 1010

Memory Requirement (# floats)

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

CODRNA

RFF

Nyström

Nyström K-means

10-8 10-6 10-4 10-2

Mean Squared Approximation Error

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

CODRNA

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

0.05

0.1

0.15

0.2

0.25

0.3

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

COVTYPE

RFF

Nyström

Nyström K-means

104 106 108 1010

Memory Requirement (# floats)

0.05

0.1

0.15

0.2

0.25

0.3

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

COVTYPE

RFF

Nyström

Nyström K-means

10-7 10-6 10-5 10-4 10-3

Mean Squared Approximation Error

0.05

0.1

0.15

0.2

0.25

0.3

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or
COVTYPE

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

104 106 108 1010

Memory Requirement (# floats)

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

10-7 10-6 10-5 10-4 10-3

Mean Squared Approximation Error

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

Figure D.3: Heldout classification or regression performance for the Nyström method vs. random

Fourier features, in terms of the total numbers of features (left), total memory requirement (middle),

and kernel approximation error (right) of the corresponding models. Results reported on Adult,

Cod-RNA, CovType, and Forest.

APPENDIX D. NYSTRÖM APPENDIX 118

103 104 105 106

Number of Features

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

10-6 10-5 10-4 10-3

Mean Squared Approximation Error

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

8

8.5

9

9.5

10

10.5

11

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

107 CENSUS

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

8

8.5

9

9.5

10

10.5

11

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

107 CENSUS

RFF

Nyström

Nyström K-means

10-10 10-8 10-6 10-4 10-2

Mean Squared Approximation Error

8

8.5

9

9.5

10

10.5

11

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

107 CENSUS

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

22

24

26

28

30

32

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

CPU

RFF

Nyström

Nyström K-means

104 105 106 107 108

Memory Requirement (# floats)

22

24

26

28

30

32

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

CPU

RFF

Nyström

Nyström K-means

10-10 10-8 10-6 10-4 10-2

Mean Squared Approximation Error

22

24

26

28

30

32
H

el
do

ut
 M

ea
n

S
qu

ar
ed

 E
rr

or
CPU

RFF

Nyström

Nyström K-means

103 104 105 106

Number of Features

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

105 106 107 108 109

Memory Requirement (# floats)

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

10-7 10-6 10-5 10-4 10-3

Mean Squared Approximation Error

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

Figure D.4: Heldout classification or regression performance for the Nyström method vs. random

Fourier features, in terms of the total numbers of features (left), total memory requirement (middle),

and kernel approximation error (right) of the corresponding models. Results reported on TIMIT,

Census, CPU, and YearPred.

APPENDIX D. NYSTRÖM APPENDIX 119

0.2N 0.4N 0.6N 0.8N N
10-20

10-15

10-10

10-5

100

E
ig

en
va

lu
es

/N

ADULT

0.2N 0.4N 0.6N 0.8N N
10-20

10-15

10-10

10-5

100

E
ig

en
va

lu
es

/N

CODRNA

0.2N 0.4N 0.6N 0.8N N
10-10

10-8

10-6

10-4

10-2

E
ig

en
va

lu
es

/N

COVTYPE

0.2N 0.4N 0.6N 0.8N N
10-10

10-8

10-6

10-4

10-2

100

E
ig

en
va

lu
es

/N

FOREST

0.2N 0.4N 0.6N 0.8N N
10-8

10-6

10-4

10-2

100

E
ig

en
va

lu
es

/N

TIMIT

0.2N 0.4N 0.6N 0.8N N
10-25

10-20

10-15

10-10

10-5

100

E
ig

en
va

lu
es

/N

CENSUS

0.2N 0.4N 0.6N 0.8N N
10-20

10-15

10-10

10-5

100

E
ig

en
va

lu
es

/N

CPU

0.2N 0.4N 0.6N 0.8N N
10-10

10-8

10-6

10-4

10-2

100

E
ig

en
va

lu
es

/N

YEARPRED

Figure D.5: Spectrum of kernel matrices generated from N = 20k random training points.

APPENDIX D. NYSTRÖM APPENDIX 120

10-10 10-8 10-6 10-4 10-2

r = 2.5

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

ADULT

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

ADULT

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6

r = 5.5

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

ADULT

RFF

Nyström

Nyström K-means

10-10 10-8 10-6 10-4 10-2

r = 2.5

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

CODRNA

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

CODRNA

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6

r = 5.5

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

CODRNA

RFF

Nyström

Nyström K-means

10-8 10-6 10-4 10-2

r = 2.5

0.05

0.1

0.15

0.2

0.25

0.3

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

COVTYPE

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

0.05

0.1

0.15

0.2

0.25

0.3

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

COVTYPE

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 5.5

0.05

0.1

0.15

0.2

0.25

0.3

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

COVTYPE

RFF

Nyström

Nyström K-means

10-8 10-6 10-4 10-2

r = 2.5

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 5.5

0.05

0.1

0.15

0.2

0.25

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

FOREST

RFF

Nyström

Nyström K-means

Figure D.6: Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the average kernel approximation errors, measured as |k(x, y) −

z(x)T z(y)|r for r ∈ {2.5, 3.5, 5.5}. Note that due to numeric underflow, some of the models with

lowest approximation error sometimes do not appear in the plots. Results reported on Adult, Cod-

RNA, CovType, and Forest.

APPENDIX D. NYSTRÖM APPENDIX 121

10-8 10-6 10-4 10-2

r = 2.5

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6

r = 5.5

0.3

0.32

0.34

0.36

0.38

0.4

H
el

do
ut

 C
la

ss
ifi

ca
tio

n
E

rr
or

TIMIT

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 2.5

8

8.5

9

9.5

10

10.5

11

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

107 CENSUS

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

8

8.5

9

9.5

10

10.5

11

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

107 CENSUS

RFF

Nyström

Nyström K-means

10-12 10-11 10-10 10-9 10-8

r = 5.5

8

8.5

9

9.5

10

10.5

11

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

107 CENSUS

RFF

Nyström

Nyström K-means

10-10 10-8 10-6 10-4 10-2

r = 2.5

22

24

26

28

30

32

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

CPU

RFF

Nyström

Nyström K-means

10-15 10-10 10-5

r = 3.5

22

24

26

28

30

32

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

CPU

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6

r = 5.5

22

24

26

28

30

32

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

CPU

RFF

Nyström

Nyström K-means

10-8 10-6 10-4 10-2

r = 2.5

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6 10-4

r = 3.5

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

10-12 10-10 10-8 10-6

r = 5.5

80

82

84

86

88

H
el

do
ut

 M
ea

n
S

qu
ar

ed
 E

rr
or

YEARPRED

RFF

Nyström

Nyström K-means

Figure D.7: Heldout classification or regression performance for the Nyström method vs. ran-

dom Fourier features, in terms of the average kernel approximation errors, measured as |k(x, y) −

z(x)T z(y)|r for r ∈ {2.5, 3.5, 5.5}. Note that due to numeric underflow, some of the models with

lowest approximation error sometimes do not appear in the plots. Results reported on TIMIT, Cen-

sus, CPU, and YearPred.

APPENDIX D. NYSTRÖM APPENDIX 122

D.4 Background for Proofs

D.4.1 Definitions of a couple infinite dimensional Hilbert Spaces

Here we review the definitions of the Hilbert spaces `2(J) and L2(X ;µ), with their respective inner

products. Here, we assume that X is a compact metric space, that J is a countable index set, and

that µ is a positive measure on X . We now define these Hilbert Spaces:

`2(J) =

{
(aj)j∈J

∣∣∣∣
∑

j∈J
a2j <∞, aj ∈ C

}

〈(aj), (bj)〉`2(J) =
∑

j∈J
ajbj

L2(X , µ) =

{
f : X → C measurable

∣∣∣∣
∫

X
|f(x)|2dµ <∞

}

〈f, g〉L2
=

∫

X
f(x)g(x)dµ

Note that in the definitions above, we used the complex numbers as the field of interest, using a

to denote the complex conjugate of a complex number a, and using |a|2 = aa = 〈a, a〉C. The

equivalent Hilbert spaces can also be defined over the real numbers, by simply restricting aj ∈ R

and f(x) ∈ R; in the remainder of this appendix, we will assume we are working in the real versions

of these Hilbert spaces. Also, to be precise, the elements of L2(X ;µ) are equivalence classes of

functions which differ on at most a set of measure zero. This ensures that ‖f1− f2‖L2 = 0⇔ f1 =

f2. Generally we will take the measure µ to be a probability density function p over the input space

X . When µ is the standard Lebesgue measure, we simply write L2(X) instead of L2(X ;µ).

D.4.2 Review of Reproducing Kernel Hilbert Space Definitions

In this appendix, we will be working with two separate (but equivalent) representations for the

Reproducing Kernel Hilbert Space (RKHS) H corresponding to a kernel function. The first is the

Moore-Aronsajn RKHS construction, as discussed in Section 2.4. We will define ϕ(x) ≡ k(·, x),

so that 〈ϕ(x), ϕ(y)〉 = k(x, y).

The second representation is given by Mercer’s Theorem. Mercer’s Theorem states that k(x, y) =
∑N

j=1 λjej(x)ej(y) =
〈√

λjej(x),
√
λjej(y)

〉
`2([N])

, where the λj and ej are the (strictly positive)

APPENDIX D. NYSTRÖM APPENDIX 123

eigenvalues and eigenfunctions, respectively, of the linear operator L : L2(X ; p) → L2(X ; p) de-

fined as L[f](y) =
∫
x∈X k(x, y)f(x)p(x)dx. We will define ϕ′(x) ≡ (

√
λjej(x))Nj=1, so that

〈ϕ′(x), ϕ′(y)〉 = k(x, y). We will assume λ1 ≥ λ2 ≥ . . . > 0.

D.5 Proofs: Nyström Background Section

Proof of Claim 1: Let K̂ = UΛUT be the SVD of the landmark kernel matrix. Let λ(m)
i denote the

ith element on the diagonal of Λ, and let U (m)
i denote the ith column of U , and let U (m)

k,i be the kth

element in this column. Consider the set S = {φ̂1(·), . . . , φ̂m(·)} ∈ H of elements in the RKHSH

corresponding to the kernel k, where φ̂i(·) = 1√
λ
(m)
i

∑m
k=1 U

(m)
k,i k(x̂k, ·).

We will first show that this set S is an orthonormal basis of the subspaceA = span({k(x̂1, ·), . . . , k(x̂m, ·)}) ⊂

H, and we will then show that the Nyström method can be understood as performing a projection

onto this subspace A.

In order to prove that the elements of S are orthonormal, we consider
〈
φ̂i(·), φ̂j(·)

〉
H

:

〈
φ̂i(·), φ̂j(·)

〉
H

=

〈
1√
λ
(m)
i

m∑

k=1

U
(m)
k,i k(x̂k, ·),

1√
λ
(m)
j

m∑

l=1

U
(m)
l,j k(x̂l, ·)

〉

=
1√

λ
(m)
i λ

(m)
j

m∑

k,l=1

U
(m)
k,i U

(m)
l,j k(x̂k, x̂l)

=
1√

λ
(m)
i λ

(m)
j

[UT K̂U]i,j

=
1√

λ
(m)
i λ

(m)
j

Λi,j

= 1 if i = j, 0 otherwise.

This proves that the elements of S are an orthonormal set. Because all the elements of S are in the

A = span({k(x̂1, ·), . . . , k(x̂m, ·)}), and because the size of S matches the dimension of A, this

proves that the set S is an orthonormal basis of A.

We will now show that the Nyström representation z(x) corresponds to performing a projection

of k(x, ·) onto the subspace A. Let PA : H → A denote the projection operator onto the subspace

APPENDIX D. NYSTRÖM APPENDIX 124

A of H. Note that PA(k(x, ·)) =
∑m

i=1

〈
φ̂i(·), k(x, ·)

〉
H
φ̂i(·). Treating S as the “standard basis”

of A, we can consider the isometric isomorphism ψ : A → Rm, defined as ψ(
∑m

i=1 aiφ̂i(·)) =

[a1, . . . , am]T . Thus, ψ(PA(k(x, ·))) =

[〈
φ̂1(·), k(x, ·)

〉
H
, . . . ,

〈
φ̂m(·), k(x, ·)

〉
H

]
. We can

now consider
〈
φ̂i(·), k(x, ·)

〉
H

:

〈
φ̂i(·), k(x, ·)

〉
H

=

〈
1√
λ
(m)
i

m∑

k=1

U
(m)
k,i k(x̂k, ·), k(x, ·)

〉

=
1√
λ
(m)
i

m∑

k=1

U
(m)
k,i k(x̂k, x)

=
1√
λ
(m)
i

U
(m)T
i kx

=
[
Λ−1/2UTkx

]
i

= zi(x)

Thus, ψ(PA(k(x, ·))) = z(x), which proves that the Nyström representation corresponds to

projecting the (potentially) infinite dimensional element k(x, ·) ∈ H onto the finite dimensional

subspace A.

Proof of Corollary 1: Clearlyϕ(x) = ϕA(x)+ϕA⊥(x), and by the Pythagorean theorem ‖ϕ(x)‖2H =

‖ϕA(x)‖2H + ‖ϕA⊥(x)‖2H = 1. Thus,

k(x, y) = 〈ϕ(x), ϕ(y)〉H

= 〈ϕA(x) + ϕA⊥(x), ϕA(y) + ϕA⊥(y)〉H

= 〈ϕA(x), ϕA(y)〉H + 〈ϕA⊥(x), ϕA⊥(y)〉H

= 〈z(x), z(y)〉`2 + 〈ϕA⊥(x), ϕA⊥(y)〉H

⇒ k(x, y)− 〈z(x), z(y)〉`2 = 〈ϕA⊥(x), ϕA⊥(y)〉H

Thus, the error Nyström makes in predicting k(x, y) is precisely the dot-product of the components

of ϕ(x) and ϕ(y) which are orthogonal to the subspace A.

APPENDIX D. NYSTRÖM APPENDIX 125

Proof of Corollary 2: This follows directly from the above corollary.

k(x, x)− ‖z(x)‖2`2 = ‖ϕA⊥(x)‖2H

⇒ ‖z(x)‖2`2 = k(x, x)− ‖ϕA⊥(x)‖2H

≤ k(x, x)

Thus, Nyström systematically underestimates “self-similarity” k(x, x).

Proof of Corollary 3: This follows directly from Corollary 1. If k(x, ·) ∈ A, then ϕA⊥(x) = 0,

and thus

k(x, y)− 〈z(x), z(y)〉`2 = 〈ϕA⊥(x), ϕA⊥(y)〉H

= 〈0, ϕA⊥(y)〉H

= 0

⇒ k(x, y) = 〈z(x), z(y)〉`2

D.6 Proofs: Nyström Error Analysis

D.6.1 Theorem 4

First, we give the following proof sketch: Let k̃(x, y) = 〈z(x), z(y)〉, R(x, ε) = k(x,x)−k̃(x,x)−ε
C(λ−1

r m+1)
,

and let B(x,R) be the open ball of radius R around x. First we show that if ‖x − y‖2 < R(x, ε),

then |k(x, y)− k̃(x, y)| > ε (part 1). We then show that if this same condition holds it must also be

true that k(x, y)− k̃(x, y) > 0 (part 2), which proves that it must be true that k(x, y)− k̃(x, y) > ε.

In order to prove the first part, we use the triangle inequality to show that |k̃(x, y) − k(x, y)| ≥

|k̃(x, x)−k(x, x)|−|k(x, y)−k(x, x)|−|k̃(x, x)−k̃(x, y)|. We then upper bound |k(x, y)−k(x, x)|

and |k̃(x, x)−k̃(x, y)| using the fact that both k and k̃ are Lipschitz continuous functions (in each of

their arguments). In order to prove the second part we show that it cannot be true that there exist two

points y1, y2 within a distance ε of x such that k(x, y1)− k̃(x, y1) > ε and k(x, y2)− k̃(x, y2) < −ε.

Then we note that wheneverR(x, ε) > 0, it must be that y = x satisfies ‖x−y‖ = 0 < R(x, ε), and

thus that k(x, y)− k̃(x, y) > ε. As a result, all y ∈ B(x,R(x, ε)) must satisfy k(x, y)− k̃(x, y) > ε.

We now dive into the full proof.

APPENDIX D. NYSTRÖM APPENDIX 126

We will first prove that when ‖x− y‖2 < R(x, ε) holds, that |k(x, y)− zr(x)T zr(y)| > ε. Let

k̃(x, y) = 〈zr(x), zr(y)〉. Let a1 = ‖zr(x)‖2, a2 = |k̃(x, x)−k̃(x, y)|, and a3 = |k(x, y)−k(x, x)|.

By the triangle inequality we have:

|k̃(x, x)− k(x, x)| ≤ |k̃(x, x)− k̃(x, y)|+ |k̃(x, y)− k(x, y)|+ |k(x, y)− k(x, x)|

k(x, x)− a1 ≤ a2 + |k̃(x, y)− k(x, y)|+ a3

⇒ |k̃(x, y)− k(x, y)| ≥ k(x, x)− a1 − a2 − a3

So if a1 + a2 + a3 < k(x, x), then the Nyström method makes a (potentially very large) error

estimating k(x, y). a2 and a3 can be shown to be small by the fact that k and k̃ are continuous

functions (in each of their entries). We will show this now.

If follows immediately from our assumption that all function of the form k(x, ·) are C-Lipschitz

that a3 = |k(x, x)− k(x, y)| ≤ C‖x− y‖. Now, we must simply bound a2. In Lemma 1 below we

show that a2 = |k̃(x, x)− k̃(x, y)| ≤ λ−1r mC‖x− y‖.

Thus, it immediately follows that:

|k̃(x, y)− k(x, y)| ≥ k(x, x)− k̃(x, x)− λ−1r mC‖x− y‖ − C‖x− y‖

= k(x, x)− k̃(x, x)− C‖x− y‖(λ−1r m+ 1)

Thus, if k(x, x)−k̃(x, x)−C‖x−y‖(λ−1r m+1) > ε, it must follow that |k̃(x, y)−k(x, y)| > ε.

We now rearrange the condition under which this holds.

k(x, x)− k̃(x, x)− C‖x− y‖(λ−1r m+ 1) > ε

⇔ −C‖x− y‖(λ−1r m+ 1) > ε− k(x, x) + k̃(x, x)

⇔ C‖x− y‖(λ−1r m+ 1) < k(x, x)− k̃(x, x)− ε

⇔ ‖x− y‖ <
k(x, x)− k̃(x, x)− ε

C(λ−1r m+ 1)

We will now prove that under this same condition on ‖x−y‖2, it must also be true that k(x, y)−

k̃(x, y) > 0. This would mean that k(x, y)−k̃(x, y) = |k(x, y)−k̃(x, y)| > εwhen these conditions

holds. Thus, we are not only guaranteed that Nyström makes a large mistake on this x, y pair, but

we know that Nyström will be underestimating the true value of k(x, y).

Let R(x, ε) = k(x,x)−k̃(x,x)−ε
C(λ−1

r m+1)
. We have already proven that all y ∈ B(x,R(x, ε)) (the open

ball of radius R(x, ε) around x) must satisfy |k(x, y) − k̃(x, y)| > ε. Assume there exists a point

APPENDIX D. NYSTRÖM APPENDIX 127

y1 ∈ B(x,R(x, ε)) satisfying k(x, y1) − k̃(x, y1) > ε, and another point y2 ∈ B(x,R(x, ε))

for which k(x, y2) − k̃(x, y2) < −ε. This immediately yields a contradiction because due to the

continuity of the function k(x, y)− k̃(x, y) in the variable y, there must exist a point along the line

{ty1 + (1 − t)y2 | t ∈ [0, 1]} for which k(x, y) − k̃(x, y) = 0. But B(x,R(x, ε)) is a convex set,

and thus every point along this line must live in this set as well. Thus, k(x, y)− k̃(x, y) = 0 would

contradict the result we have proven that any y ∈ B(x,R(x, ε)) must satisfy |k(x, y)− k̃(x, y)| > ε.

Thus, it cannot hold that there exist such points y1,y2.

In the case where B(x,R(x, ε)) 6= ∅, it must hold that y = x satisfies y ∈ B(x,R(x, ε)). Thus,

‖x − y‖2 = 0 < R(x, ε) = k(x,x)−k̃(x,x)−ε
C(λ−1

r m+1)
⇒ k(x, x) − k̃(x, x) > ε. Thus, it must hold that all

y ∈ B(x,R(x, ε)) also satisfy k(x, x)− k̃(x, x) > ε. This finalizes the proof of Theorem 1.

�

Lemma 1: |k̃(x, x)− k̃(x, y)| ≤ λ−1r mC‖x− y‖.

Proof: Let h = ky− kx = [k(y, x̂1)− k(x, x̂1), . . . , k(y, x̂m)− k(x, x̂m)]T , and thus ky = kx +h.

APPENDIX D. NYSTRÖM APPENDIX 128

It follows that:

|k̃(x, x)− k̃(x, y)| = |zr(x)T zr(x)− zr(x)T zr(y)|

= |‖zr(x)‖2 − kTxUrΣ−1/2r Σ−1/2r UTr ky|

= |‖zr(x)‖2 − kTxUrΣ−1r UTr (kx + h)|

= |‖zr(x)‖2 − ‖zr(x)‖2 − kTxUrΣ−1r UTr h)|

= |kTxUrΣ−1r UTr h|

= |
〈
UrΣ

−1
r UTr kx, h

〉
|

≤ ‖UrΣ−1r UTr kx‖ · ‖h‖

≤ ‖UrΣ−1r UTr ‖ · ‖kx‖ · ‖h‖

≤ λ−1r
√
m · ‖h‖

= λ−1r
√
m

√√√√
m∑

i=1

(
k(y, x̂i)− k(x, x̂i)

)2

≤ λ−1r
√
m

√√√√
m∑

i=1

(
C‖x− y‖

)2

= λ−1r
√
m
√
mC2‖x− y‖2

= λ−1r mC‖x− y‖

This proves the lemma. �

D.6.2 Theorem 5

We first give a short proof sketch: We prove this by noting that the expected difference between

k(x, x) and ‖z(x)‖2 is equal to ‖ϕA⊥‖2, which is the squared distance of ϕ(x) from the subspace

A spanned by ϕ(x̂1), . . . , ϕ(x̂m). We can lower bound the expectation of this squared distance

by the expected squared distance of the data from the affine subspace in H with the lowest ex-

pected squared distance. The affine subspace minimizing this expected squared distance is pre-

cisely µ + span(ec1, . . . , e
c
m), and the expected squared distance from this affine subspace is equal

to
∑Nc

j=m+1 λ
c
j .

APPENDIX D. NYSTRÖM APPENDIX 129

We now give the full proof: Consider the i, j element of the uncentered, and potentially infinite

dimensional covariance matrix of ϕ′(x) = (
√
λiei(x))Ni=1:

[
EX
[
ϕ′(X)ϕ′(X)T

]]

i,j

= EX
[√

λiei(X)
√
λjej(X)

]

=

∫

x∈X

√
λiλjei(x)ej(x)p(x)dx

=
√
λiλj

∫

x∈X
ei(x)ej(x)p(x)dx

= λi · 1[i = j].

Let {vj}Nj=1 be an orthonormal basis of `2([N c]) (e.g., v1 = (1, 0, 0, . . .), v2 = (0, 1, 0, . . .),

etc.). Let U∗m = span(v1, . . . , vm). Let z(x) be an m-dimensional Nyström representation, with

landmark points denoted {x̂1, . . . , x̂m}. Then it follows that:

EX
[
k(X,X)− ‖z(X)‖2

]
≥ min

x̂1,...,x̂m∈X
EX
[
k(x, x)− ‖z(x)‖2

]

= min
x̂1,...,x̂m∈X

EX
[
dist2(ϕ′(x), span(k(x̂1, ·), . . . , k(x̂m, ·)))

]

≥ min
U⊆`2([N]),dim(U)=m

EX
[
dist2(ϕ′(x), U)

]

≥ min
U⊆`2([N]),dim(U)=m,u0∈`2([N])

EX
[
dist2(ϕ′(x), u0 + U)

]
(D.1)

= min
U⊆`2([N]),dim(U)=m

EX
[
dist2(ϕ′(x), µ+ U)

]
(D.2)

= min
U⊆`2([N]),dim(U)=m,

EX
[
dist2(ϕ′(x)− µ,U)

]

= min
U⊆`2([Nc]),dim(U)=m,

EX
[
dist2(ϕc(x), U)

]

= EX
[
dist2(ϕc(x), U∗m)

]
(D.3)

=

∫

x∈X
dist2(ϕc(x), U∗m)p(x)dx

=

∫

x∈X

Nc∑

j=m+1

λcje
c
j(x)2p(x)dx

=

Nc∑

j=m+1

λcj

∫

x∈X
ecj(x)2p(x)dx

=
Nc∑

j=m+1

λcj .

APPENDIX D. NYSTRÖM APPENDIX 130

Inequality D.1 holds because the expected distance of the data to the “closest” subspace U of dimen-

sion m must be greater than or equal to the expected distance of the data to the “closest” affine sub-

space U + u0 = {u+ u0 | u ∈ U} of dimension m. Inequality D.2 holds because the closest affine

subspace must have u0 = µ (see Theorem 5.3: http://www.cs.columbia.edu/˜djhsu/

coms4772-f16/lectures/notes-pca.pdf). Equality D.3 holds because the subspace of

dimension m minimizing the expected distance to the centered data must be the subspace spanned

by the m leading eigenvectors of the centered covariance matrix (this is precisely how we defined

U∗m). �

D.6.3 Theorem 6

Letting f(X) = k(X,X) − ‖z(X)‖2 ∈ [0, 1] and EX [f(X)] = f̄ ≥ Rm, and assuming 0 ≤ ε ≤

Rm, we can apply Hoeffding’s inequality as follows:

PX
[
f(X) ≤ ε

]
≤ PX

[
f(X) ≤ ε+ (f̄ −Rm)

]

= PX
[
f(X)− f̄ ≤ −(Rm − ε)

]

≤ exp
(
− 2
(
Rm − ε

)2) (By Hoeffding’s inequality).

⇒ PX
[
k(X,X)− ‖z(X)‖2 ≥ ε

]
= PX

[
f(X) ≥ ε

]

= 1− PX
[
f(X) ≤ ε

]

≥ 1− exp
(
− 2
(
Rm − ε

)2)
.

�

D.6.4 Theorem 7

We first give a short sketch of the proof: Let ϕ′A(x) denote the component of ϕ(x) in A which is

orthogonal to µA, and let ϕ′
A⊥

(x) denote the component of ϕ(x) inA⊥ which is orthogonal to µA⊥ .

We can always decompose ϕ(x) into 4 orthogonal components: ϕ(x) = αxµA+βxµA⊥+ϕ′A(x)+

ϕ′
A⊥

(x). By definition of µ, EX [ϕ(X)] = µ, and we use this to show EX [αX] = EX [βX] = 1,

and that EX [ϕ′A(X)] = EX
[
ϕ′
A⊥

(X)
]

= 0. It follows that EX [z(X)] = µA, and thus that

EX,Y [k(X,Y)− 〈z(X), z(Y)〉] = EX,Y [〈ϕ(X), ϕ(Y)〉 − 〈z(X), z(Y)〉] = ‖µ‖2 − ‖µA‖2 =

‖µA⊥‖2.

http://www.cs.columbia.edu/~djhsu/coms4772-f16/lectures/notes-pca.pdf
http://www.cs.columbia.edu/~djhsu/coms4772-f16/lectures/notes-pca.pdf

APPENDIX D. NYSTRÖM APPENDIX 131

We now begin the full proof: Let ϕ′A(x) denote the component of ϕ(x) inAwhich is orthogonal

to µA, and let ϕ′
A⊥

(x) denote the component of ϕ(x) in A⊥ which is orthogonal to µA⊥ .

We can always decompose ϕ(x) into 4 orthogonal components:

ϕ(x) = αxµA + βxµA⊥ + ϕ′A(x) + ϕ′A⊥(x).

We have defined µ = EX [ϕ(X)], so we know that

µ = EX [ϕ(X)]

= EX
[
αXµA + βXµA⊥ + ϕ′A(X) + ϕ′A⊥(X)

]

= EX [αX]µA + EX [βX]µA⊥ + EX
[
ϕ′A(X)

]
+ EX

[
ϕ′A⊥(X)

]
.

Because by assumption µA, µA⊥ , ϕ′A(x), and ϕ′
A⊥

(x) are all mutually orthogonal (and thus linearly

independent) for any x, the only way for this equality to hold is if EX [αX] = EX [βX] = 1, and

EX [ϕ′A(X)] = EX
[
ϕ′
A⊥

(X)
]

= 0.

Now, consider z(x) = αxµA + ϕ′A(x). It is clear that

EX [z(X)] = EX
[
αXµA + ϕ′A(X)

]

= EX [αX]µA + EX
[
ϕ′A(X)

]

= µA

It follows from Lemma 7.1 below that

EX,Y [〈z(X), z(Y)〉] = 〈EX [z(X)] ,EY [z(Y)]〉

= ‖µA‖2

Also by Lemma 7.1, we know that

EX,Y [k(X,Y)] = EX,Y [〈ϕ(X), ϕ(Y)〉]

= 〈EX [ϕ(X)] ,EY [ϕ(Y)]〉

= ‖µ‖2

Combine the above 2 equalities, we get that

EX,Y [k(X,Y)− 〈z(X), z(Y)〉] = ‖µ‖2 − ‖µA‖2

= ‖µA⊥‖2

APPENDIX D. NYSTRÖM APPENDIX 132

This completes the proof. �

Lemma 7.1. Let W,Z be random variables over H = `2([N]), where N ≤ ∞ is the dimension of

H. Then

EW,Z [〈W,Z〉] = 〈EW [W] ,EZ [Z]〉

Proof.

EW,Z [〈W,Z〉] = EW,Z

[
N∑

i=1

WiZi

]

=

N∑

i=1

EW [Wi]EZ [Zi]

= 〈EW [W] ,EZ [Z]〉

D.7 Other ways of understanding the Nyström method

D.7.1 Nyström method as a projection onto a subspace

In Appendix D.5, we proved that the Nyström method can be understood as performing a projection

of the datapoints in the RKHS onto the subspace corresponding to the landmark points. For more

details, see that section of the Appendix.

D.7.2 Nyström method as a solution to an optimization problem

Another way of understanding the linear transformation performed by Nyström on top of k′(x) is

by viewing it as a solution to the following optimization problem:

minL∈Rm×m

m∑

i,j=1

(〈
Lk′(x̂i), L k

′(x̂j)
〉
− k(x̂i, x̂j)

)2

minL∈Rm×m

m∑

i,j=1

(
k′(x̂i)

T LTLk′(x̂j)− k(x̂i, x̂j)
)2

minL∈Rm×m ‖K̂T LTL K̂ − K̂‖2F

APPENDIX D. NYSTRÖM APPENDIX 133

It is immediately clear from this objective function that the global minimizer satisfies

K̂TLTL = 1

⇒ LTL = K̂−1

= UΛ−1UT

⇒ L = Λ−1/2UT ,

which is exactly the linear transformation performed by Nyström (z(x) = Λ−1/2UTk′(x)).

D.7.3 Nyström method as a preconditioner

Consider the kernel matrix K̂ = UΛUT over the landmark points {x̂1, . . . , x̂m}. Let’s denote

k′(x) = kx = [k(x̂1, x), . . . , k(x̂m, x)]T . Thus, K̂ = [k′(x̂1), . . . , k
′(x̂m)]. We can consider

k′(x) as a feature representation for a point x, and from this perspective, K̂ is a data matrix storing

these representations as columns for all the landmark points. The (non-centered) sample covariance

matrix of this data matrix is thus (proportional to) Hk = K̂K̂T = (UΛUT)(UΛUT) = UΛ2UT .

Thus, if K̂ is poorly conditioned, Hk will be VERY poorly conditioned! Specifically, the condition

number of Hk is equal to the square of the condition number of K̂: κ(Hk) =
λ21
λ2m

=
(
λ1
λm

)2
=

κ(K̂)2.

The Nyström method (partially) addresses this problem of learning on top of the k′(x) feature

representations by preconditioning these representations: z(x) = Λ−1/2UTk′(x). Letting Z =

[z(x̂1), . . . , z(x̂m)] = Λ−1/2UT K̂, we can consider the corresponding covariance matrix:

Hz = ZZT

= (Λ−1/2UT K̂)(K̂UΛ−1/2)

= (Λ−1/2UTUΛUT)(UΛUTUΛ−1/2)

= Λ−1/2 · Λ · Λ · Λ−1/2

= Λ

Thus, the condition number for the Nyström covariance matrix Hz is κ(Hz) = λ1
λm

= κ(K̂),

which is a lot better than κ(K̂)2.

APPENDIX D. NYSTRÖM APPENDIX 134

D.7.4 Nyström method as eigenfunction approximator

This explanation is adapted from the original paper introducing the Nyström method [Williams and

Seeger, 2001].

Consider the following linear operator L : L2(X ; p)→ L2(X ; p):

L[f](y) =

∫

X
k(y, x)f(x)p(x)dx

Recall that the inner product in L2(X ; p) is defined as:

〈f, g〉L2
=

∫

x∈X
f(x)g(x)p(x)dx.

By Mercer’s Theorem, it follows that k(x, y) can be decomposed as follows:

k(x, y) =
∑

j∈J
λjφj(x)φj(y),

where the λi and φi are the eigenvalues and eigenvectors of L, and the eigenvalues λi are strictly

positive scalars, satisfying λ1 ≥ λ2 ≥ . . . > 0. Note that this shows that there are at most countably

infinitely many of them). Mercer’s Theorem gives a (potentially) infinite dimensional representation

ϕ(x) = {
√
λjφj(x)}j∈J ∈ `2(J) such that k(x, y) = 〈ϕ(x), ϕ(y)〉`2(J) =

∑
j∈J λjφj(x)φj(y).

By the definition of eigenvalues/eigenfunctions in L2(X ; p), we know that

L[φi] = λiφi

⇒
∫

X
k(y, x)φi(x)p(x)dx = λiφi(y).

We now consider a Monte Carlo approximation to the above integral, with i.i.d. sample {x1, . . . , xm}

from p(x):

1

m

m∑

k=1

k(y, xk)φi(xk) ≈ λiφi(y) (D.4)

These eigenfunctions are by definition “p-orthogonal”, meaning:
∫

X
φi(x)φj(x)p(x)dx = δij ,

where δij = 1[i = j]. Once again using monte-carlo approximation of this integral, this becomes:

⇒ 1

m

m∑

k=1

φi(xk)φj(xk) ≈ δij

APPENDIX D. NYSTRÖM APPENDIX 135

Equation D.4 can be rewritten in matrix notation by considering y ∈ {x1, . . . , xm}.

1

m

m∑

k=1

k(xj , xk)φi(xk) ≈ λiφi(xj)

⇒ K(m) · Φ(m) ·
(

1

m
1

)
≈ Φ(m) · Λ,

where K(m) is the m by m matrix whose jth row is k(m)T
xj = [k(xj , x1), . . . , k(xj , xm)], Φ(m)

is the m by m matrix whose ith column is φ̄(m)
i = [φi(x1), . . . , φi(xm)]T , and Λ is the diagonal

matrix with λi as the ith term on the diagonal. Note that the `2 norm of φ̄(m)
i is approximately

√
m

by the “p-orthogonality” of the eigenvectors, and thus if we take Φ(m) ·
(

1√
m
1

)
, the columns of

this matrix are approximately orthogonal. Thus, by multiplying both sides of the above equation by
√
m1, we can rearrange it as follows (using the fact that the matrices of the form c1 for any constant

c commute with all matrices):

K(m) · Φ(m) ·
(

1√
m
1

)
≈

(√
m1

)
· Φ(m) · Λ

K(m) · Φ(m) ·
(

1√
m
1

)
≈ Φ(m) ·

(
1√
m
1

)
· Λ ·

(
m1

)

K(m) · Ū (m) ≈ Ū (m) · Λ̄(m),

where Ū (m) = Φ(m)·
(

1√
m
1
)

is an (approximately) orthogonal matrix whose ith column is 1√
m
φ̄
(m)
i ,

and where Λ̄(m) = Λ ·
(
m1
)

is a diagonal matrix whose ith term on the diagonal is mλi. This

motivates computing the (exact) eigendecomposition of K(m) = U (m)Λ(m)U (m)T , and treating

U (m) as an approximation of Ū (m), and Λ(m) as an approximation of Λ̄(m). Letting U (m)
i denote

the ith column of U (m), U (m)
k,i denote the kth term in this column, λ(m)

i = Λ
(m)
i,i , and λ̄(m)

i = Λ̄
(m)
i,i ,

we get that:

U
(m)
i ≈ Ū

(m)
i

=
1√
m
φ̄
(m)
i

⇒ φ̄
(m)
i ≈

√
m · U (m)

i

⇒ φi(xk) ≈
√
m · U (m)

k,i

λ
(m)
i ≈ λ̄

(m)
i

= mλi

⇒ λi ≈
1

m
λ
(m)
i

APPENDIX D. NYSTRÖM APPENDIX 136

Plugging these identities back into Equation D.4 gives us an approximation for the ith eigen-

function of L:

1

m

m∑

k=1

k(y, xk)φi(xk) ≈ λiφi(y)

1

m

m∑

k=1

k(y, xk)
√
m · U (m)

k,i ≈ 1

m
λ
(m)
i φi(y)

√
m

λ
(m)
i

m∑

k=1

k(y, xk) · U
(m)
k,i ≈ φi(y)

⇒ φi(y) ≈
√
m

λ
(m)
i

U
(m)T
i k(m)

y ,

where k(m)
y = [k(y, x1), . . . , k(y, xm)]T . Furthermore, we already saw above the (approximate)

mapping between the eigenvalues λ(m)
i of K(m) and the eigenvalues λi of L.

λi ≈
1

m
λ
(m)
i

Thus, we can see that using the monte-carlo estimate in equation D.4 reveals an (approximate)

correspondence between eigenvalues/vectors ofK(m) and the eigenvalues and eigenfunctions of the

linear operator L corresponding to the kernel k. This correspondence allows us to approximate the

full kernel matrix K(n), using the SVD of K(m), in the following manner:

λi ≈
1

m
λ
(m)
i

≈ 1

n
λ
(n)
i

⇒ λ
(n)
i ≈ n

m
λ
(m)
i

Thus, we can use the eigenvalues of K(m) to approximate the eigenvalues of K(n). Computing the

approximate eigenvectors ofK(n) is a tiny bit trickier. Using φi(y) ≈
√
m

λ
(m)
i

U
(m)T
i k

(m)
y , we can plug

in all y ∈ {x1, . . . , xn}, and get:

φi(xk) ≈
√
m

λ
(m)
i

U
(m)T
i k(m)

xk

APPENDIX D. NYSTRÖM APPENDIX 137

Letting φ̄(n)i = [φi(x1), . . . , φi(xn)]T , and letting Km,n be the m by n matrix whose kth columns

is k(m)
xk , we can see that

φ̄
(n)
i ≈

(√
m

λ
(m)
i

U
(m)T
i Km,n

)T

⇒ φ̄
(n)
i ≈

√
m

λ
(m)
i

KT
m,nU

(m)
i .

We also know by applying our results from K(m) directly to K(n) that

φ̄
(n)
i ≈

√
n · U (n)

i .

Thus, combining the above 2 equations, we can see that

U
(n)
i ≈

√
m

n

1

λ
(m)
i

KT
m,nU

(m)
i .

This last equation gives us an approximation to the top m eigenvectors of K(n) using the m eigen-

vectors of K(m).

To summarize, we have shown that we can approximate the top m eigenvalues and eigenvectors

of K(n) using the eigenvalues and eigenvectors of K(m), as follows:

λ
(n)
i ≈ n

m
λ
(m)
i

⇒ Λ̃(n) ,
n

m
Λ(m)

U
(n)
i ≈

√
m

n

1

λ
(m)
i

KT
m,nU

(m)
i

⇒ Ũ (n) ,

√
m

n
KT
m,nU

(m)(Λ(m))−1

where we let Ũ (n) be the n by m matrix containing the above approximations for U (n)
1 through

U
(n)
m as columns, and Λ̃(n) be the m by m matrix containing the above approximation for λ(n)1

through λ(n)m on the diagonal. We can now use Ũ (n) and Λ̃(n) to construct the following low-rank

approximation for K(n):

APPENDIX D. NYSTRÖM APPENDIX 138

K(n) ≈ Ũ (n)Λ̃(n)Ũ (n)T

=

(√
m

n
KT
m,nU

(m)(Λ(m))−1
)(

n

m
Λ(m)

)(√
m

n
KT
m,nU

(m)(Λ(m))−1
)T

= KT
m,nU

(m)(Λ(m))−1Λ(m)(Λ(m))−1U (m)TKm,n

= KT
m,nU

(m)(Λ(m))−1U (m)TKm,n

= KT
m,n(K(m))−1Km,n.

This is precisely the approximate low-rank decomposition the Nyström method provides for the

n by n kernel matrix K(n).

	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Kernel methods
	2.2.1 Primal formulation
	2.2.2 Dual formulation

	2.3 Kernel approximation
	2.3.1 Random Fourier features (RFF)
	2.3.2 Nyström method

	2.4 Reproducing kernel Hilbert spaces (RKHS)
	2.4.1 Representer Theorem

	2.5 Neural networks
	2.5.1 Backpropagation
	2.5.2 Other architectures

	2.6 Automatic speech recognition (ASR)
	2.6.1 Acoustic model training
	2.6.2 Using neural networks for acoustic modeling

	3 Related work
	4 Random Fourier features for acoustic modeling
	4.1 Methods
	4.1.1 Using kernel approximation methods for acoustic modeling
	4.1.2 Linear bottlenecks
	4.1.3 Entropy regularized perplexity (ERP)

	4.2 Tasks, datasets, and evaluation metrics
	4.3 Details of acoustic model training
	4.4 Results
	4.5 Other Possible Improvements to DNNs and Kernels
	4.6 Conclusion

	5 Compact kernel models via random feature selection
	5.1 Random feature selection
	5.2 A sparse Gaussian kernel
	5.3 Results
	5.4 Analysis: Effects of random feature selection
	5.5 Conclusion

	6 Nyström method vs. random Fourier features
	6.1 Review of Nyström method properties
	6.2 Experiments
	6.2.1 Task and dataset details
	6.2.2 Train details
	6.2.3 Results

	6.3 Nyström method error analysis
	6.4 Conclusion

	7 Conclusion
	7.1 Future work

	Bibliography
	Appendices
	A Definitions
	B Derivation for random Fourier features
	C Detailed results
	C.1 Results from Section 4
	C.2 Results from Section 5

	D Nyström Appendix
	D.1 Datasets
	D.2 Hyperparameter Choices
	D.3 Results
	D.4 Background for Proofs
	D.4.1 Definitions of a couple infinite dimensional Hilbert Spaces
	D.4.2 Review of Reproducing Kernel Hilbert Space Definitions

	D.5 Proofs: Nyström Background Section
	D.6 Proofs: Nyström Error Analysis
	D.6.1 Theorem 4
	D.6.2 Theorem 5
	D.6.3 Theorem 6
	D.6.4 Theorem 7

	D.7 Other ways of understanding the Nyström method
	D.7.1 Nyström method as a projection onto a subspace
	D.7.2 Nyström method as a solution to an optimization problem
	D.7.3 Nyström method as a preconditioner
	D.7.4 Nyström method as eigenfunction approximator

