On the Downstream Performance of Compressed Word embeddings

Avner May, Jian Zhang, Tri Dao, Chris Ré Stanford University

Word embedding

Word embedding is a memory-intensive feature representation

Word embedding compression **Compression is critical for deployment under memory budget**

Deep compositional code learning (DCCL)¹

• Kmeans²

- Dimension reduction (e.g. PCA)
- Uniform quantization

2.09	-0.98	1.48	0.09	
0.05	-0.14	-1.08	2.12	
-0.91	1.92	0	-1.03	
1.87	0	1.53	1.49	

Key research questions

What determines the *model accuracy* of models trained with *Compressed word embeddings?*

How to optimize the *model accuracy* under *memory budgets* for the *compressed word embeddings?*

4

A new quality measure of compression word embedding

Eigenspace overlap (EO)

$$\mathcal{E}(X, \tilde{X}) := \frac{1}{\max(d, k)} \| U^T \tilde{U} \|_F^2$$

Uncompressed and compressed embedding $X \in \mathbb{R}^{n \times d}$ $\tilde{X} \in \mathbb{R}^{n \times k}$ SVD $X = U\Lambda V^T, \tilde{X} = \tilde{U}\tilde{\Lambda}\tilde{V}^T$

Intuition

More similar *spans of left singular vectors*, *better model acc.* relative to uncompressed embeddings

In the context of *fixed design linear regression*

Test MSE of fixed design regressors

$$\mathbb{E}_{\bar{y}}\left[\mathcal{R}_{\bar{y}}(\tilde{X}) - \mathcal{R}_{\bar{y}}(X)\right] = \mathcal{O}\left(1 - \mathcal{E}(X, \tilde{X})\right)$$

Label vector sampled from Span(U)

Uncompressed embedding X

Compressed embedding \tilde{X}

Theory sketch Model acc. can be bounded in terms of eigenspace overlap

Beyond *fixed design regression*

Empirical observation

EO attains better correlation with downstream model acc.

Beyond *fixed design regression*

Empirical observation

EO explains the strong performance of simple uniform quantization

Eigenspace overlap as an embedding selection criterion

1

0

0

2

5	0	2	1	
	1	0	3	
)	3	1	0	0
5	0	2	2	1
				3
				0

Which compressed word embedding attains better model accuracy?

Table 1. Selection error rate of quality measures as embedding selection criteria

Dataset	SQuAD		SST-1		MNLI	QQP
Embedding	GloVe	fastText	GloVe	fastText	BERT WordPiece	BERT WordPiece
PIP loss ¹	0.32	0.37	0.32	0.40	0.31	0.32
Δ 2	0.34	0.58	0.39	0.57	0.32	0.33
$1-\mathcal{E}$	0.17	0.11	0.19	0.20	0.10	0.10

Utility

Up to 2X lower selection error than existing quality measures

Summary

Theoretical connection b/w *eigenspace overlap* & *model acc.* for *FDR* setting Strong empirical correlations b/w *eigenspace overlap* & *model acc.* beyond *FDR* Guide selection of compressed embeddings with *improved model acc.*

