On the Downstream Performance of Compressed Word Embeddings

Avner May, Jian Zhang, Tri Dao, Chris Ré
Stanford University
Word Embeddings

Important for strong NLP performance

Take a lot of memory
Word Embedding Compression
What determines whether a compressed embedding matrix will perform well on downstream tasks?
Motivating Observation

Existing ways of measuring compression quality often *fail to explain* relative downstream performance.
Our Contributions: Outline

1. Define a **new measure** of compression quality.

2. Prove **generalization bounds** using this measure.

3. Show strong **empirical correlation** w. downstream performance.

4. Use measure to **select** compressed embeddings.

Up to 2x lower selection error rates than the next best measure.
Defining the Measure: Intuition from Linear Regression

Observation:
Predictions are determined by the span of left singular vectors.

Linear regressor predictions
Defining the Measure: Eigenspace Overlap Score (EOS)

Intuition:
Measures similarity between the span of *left singular vectors.*

\[
\text{EOS}(\text{Uncompressed embed. SVD}, \text{Compressed embed. SVD}) = \frac{1}{d} \left\| \sum_{i=1}^{d} \sigma_i \mathbf{u}_i \mathbf{v}_i^T \right\|_F^2
\]
Theoretical Results: Linear Regression

Theorem (informal):
Expected difference in *test mean-squared error* attained by *compressed* vs. *uncompressed* embeddings is *determined by EOS*.
Empirical Correlation: Beyond Linear Regression

EOS attains **strong correlation** with downstream **model accuracy**.

![Graph showing correlation between EOS and model accuracy](image1)

Higher accuracy

![Graph showing correlation between EOS and negative PIP loss](image2)

Higher quality

Empirical Correlation: Beyond Linear Regression

EOS attains *up to 2x lower selection* error rates than 2nd best.

![Bar chart showing selection error rates for NLP tasks](chart.png)

[NLP Tasks: SQuAD, SST-1, MNLI]

Selection Error Rate (%)

Our Contributions: Summary

1. Defined a new measure of compression quality.
2. Proved generalization bounds using this measure.
3. Showed strong empirical correlation with downstream perf.
4. Used measure to select compressed embeddings.
THANK YOU!

Poster #185, 5-7 pm Dec. 12!

Code: https://github.com/HazyResearch/smallfry
E-mail: avnermay@cs.stanford.edu